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Properties of the critical clusters that are instrumental in the nucleation of a first-order phase transition can
be obtained through the analysis of nucleation rate data. The theoretical tools for doing so are known as
nucleation theorems. We consider solid-phase critical clusters forming from a liquid phase, and it is shown
that their size and binding energies can be extracted from data gathered at a range of temperatures and pressures.
Ice crystal nucleation rates described recently are used to study ice clusters containing several hundred water
molecules.

I. Introduction

To understand the properties of matter on very small scales,
it is often necessary to devise experiments which amplify
microscopic effects into effects on scales more readily accessible
to measurement. For example, the presence of nanometer-sized
particles in the atmosphere can be detected by inducing the
massive condensation of some working fluid onto their surfaces,
yielding relatively large droplets which can be detected opti-
cally.1 A similar case is the generation of photons in photo-
multipliers, and there are many examples2 of the detection of
trace chemical constituents through chemical amplification.

The nucleation of a phase transition is an amplification
process. Nucleation is the process by which a metastable state
relaxes toward its true equilibrium state in the given environ-
ment. For example, a vapor confined to a box and cooled below
its dew point becomes metastable, but cannot easily condense
in the absence of foreign particles or wettable surfaces, since
the molecular clusters that have to form before bulk condensed
phases can appear are actually less stable than the original
metastable phase. Hence, they can form only with difficulty,
and the condensation is impeded. The relative stability of the
clusters depends on the degree of cooling below the dew point
(or, equivalently, the elevation of the vapor pressure above the
saturated vapor pressure). This means that to drive the transition
at a significant rate, the temperature sometimes has to be reduced
well below the dew point.

Similarly, liquids can be supercooled. Pure water can be
cooled3 to -45 °C (or less4) before ice begins to form. Again,
it is the relative instability of tiny clusters of new phase which
causes this phenomenon. Purity of the original phase is the key
requirement, and often freezing nucleation experiments are
conducted using finely divided liquids, either as an emulsion5

or an aerosol.6-9 In this way, trace impurities, which might aid
the freezing process, are confined to a minority of the droplets,
and their influence can be minimized.

It is generally agreed that clusters of the new phase with a
critical size are instrumental in allowing nucleation to take place.
The instability of smaller clusters with respect to the bulk
metastable phase is reflected in their tendency to evaporate rather
than to grow. However, this tendency is size dependent, and

large clusters prefer to grow, as they should do as they acquire
more of the bulk characteristics of the new phase. The critical
size is where the mean rates of decay and growth are equal.
Once a critical cluster is formed as a result of stochastic
fluctuation, it has a high probability of continuing to grow to
form a macroscopic “lump” of new phase. Thus, the rate at
which crystals, for example, are detected in a supercooled liquid
is a reflection of the formation rate of critical clusters. The
detected crystals are large, whereas their seeds, the critical
clusters, may consist of only a few tens or hundreds of
molecules. The properties of these clusters may be investigated
by measuring the rate of formation of large crystals, and this is
the amplification process alluded to above.

So, if nucleation rates are related to the probability of
formation of critical clusters, then what do they tell us about
their properties? The answer to this comes from either a kinetic
treatment of cluster growth and decay10 or more general
arguments from thermodynamics.11,12Both approaches suggest
that the probability of formation of a critical cluster is related
to its reversible work of formation starting from the original
phase. This in turn is related to thermodynamic properties of
the cluster, in particular its energy and entropy, as well as its
size. We shall investigate the work of formation in the next
section, develop useful theoretical results from this formulation
in section III, perform an analysis of data for the freezing of
water in section IV, and draw conclusions in section V.

II. Work of Cluster Formation

The work of formation of a cluster of new phase of a given
size depends on the constraints applied to the original phase. A
convenient set of constraints for considering the creation of
clusters in laboratory experiments is to hold constant the volume,
temperature, and chemical potential of the system. We consider
a permeable box of volumeV, which is small enough to make
the stochastic formation of more than one molecular cluster
within it extremely unlikely. The box permits the insertion of
material from an external reservoir at a constant chemical
potential µ. The reservoir also maintains the system at a
temperatureT. The parametersµ andT are chosen so that the
true equilibrium state is the solid phase (labeled “new” for
generality) but the system is set up containing the liquid (‘old’)
phase. It remains in metastable equilibrium through the difficulty
in creating a critical cluster.† Part of the special issue “Howard Reiss Festschrift”.
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Now we consider the reversible formation and growth of a
molecular cluster of new phase. Ordering the molecules and
changing the density of the material require mechanical work
to be provided externally (otherwise, the old phase would not
be metastable), and Reiss11 has provided a general formula for
this reversible work for a variety of different sets of constraints.
For our system, the work of formation is

where∆E, ∆S, and∆N are, respectively, the changes in internal
energy, entropy, and number of molecules in the system brought
about by the formation of the cluster.

At this point, we introduce the Gibbs model11,13,14 of a
cluster: a spherical volume within which the material takes on
the properties of the bulk new phase. This is surrounded by old
phase, again characterized by old phase bulk properties. This
is not at all what a cluster would look like on a microscopic
scale, but it is a useful model. The errors in representing the
properties of the cluster in this way are taken care of by
introducing a surface phase with its own thermodynamic
properties. Assuming that the work has created a single Gibbs
cluster, the changes in system extensive variables are described
by

where suffices n, s, and o label the new, surface, and old phases,
respectively.E′o is the energy of the old phase in the system
after the cluster has been formed, andEo is the energy of the
old phase in the absence of the cluster. Similar definitions apply
to S′o and So and to N′o and No. The model is illustrated in
Figure 1.

The work of formation is now written∆w ) ∆Ω, whereΩ
) E - TS - µN is the grand potential (a thermodynamic
potential which, as Reiss showed,11 emulates the work of
formation for the imposed constraints of constantT, V andµ).
Writing the change inΩ in terms of contributions from each
phase, we have

whereFn ) En - TSn, etc., andpn andVn are the volume and
pressure of the new phase.∆Ω simplifies to

whereΩs ) Fs - µsNs is the grand potential associated with

the surface phase, also represented byσAn, where σ is the
interfacial free energy andAn the surface area of the cluster.

We have created reversibly a cluster of new phase and have
assigned to it (and its surface) a variety of thermodynamic
properties. Note that the volumeVn of the new phase is arbitrary
but that surface properties such asσ andNs take values to make
∆Ω independent of where we place the so-called dividing
surface between the phases. The requirement that the position
of the dividing surface should not affect the thermodynamic
properties is an important feature of the Gibbs model.

Having made such a choice and established the thermody-
namic properties of each phase in the model, we now focus on
the critical cluster, which we identify by its property of unstable
equilibrium and, hence, the invariance of the work of formation
under variation of unconstrained variables. These are the
molecular numbersNn andNs and the cluster volume.T, µ, and
po are held constant. We determine the increment in∆Ω arising
from increments in these three quantities:

By introducing Gibbs-Duhem relationsNn dµn ) Vn dpn and
Ns dµs ) -An dσ (at constantT), we get

and so by demanding invariance in the form of (∂∆Ω/∂Nn)Ns,Vn

) 0, etc., for the critical cluster, we obtain the conditionsµn )
µ, µs ) µ, andpn - po ) σ dAn/dVn. These are familiar relations
for a droplet in chemical and mechanical balance with its
surroundings.11 Denoting the properties of the critical cluster
with an asterisk, we can now write the work of formation of
the critical cluster as

Useful relations known as nucleation theorems emerge when
we determine the dependence of this work of formation on the
external constraints, in this caseT andµ.

III. Nucleation Theorems

The nucleation theorem was known empirically for some
years before it was derived formally. In 1982, Kashchiev15

presented a phenomenological proof of a general thermodynamic
relationship between the work of formation of a critical cluster
and the size of this cluster. He noted that this relationship, or
“theorem”, is satisfied by the classical theory of nucleation16

and showed that it leads to a virtually model-independent
relationship between the size of the critical cluster, the nucleation
rate, and the chemical potential difference between the old and
new phases. Anisimov and co-workers17 also made use of the
relationship, basing its validity upon the law of mass action. In
1993, Viisanen, Strey, and Reiss18,19found that this relationship
held quite generally using a statistical mechanical approach for
single and multicomponent homogeneous vapor condensation.
They noted that the relationship involved the excess in the
number of molecules associated with the critical cluster over
the number that would be present in the absence of a cluster.
Further development was provided by Viisanen, Strey, Laak-
sonen, and Kulmala.20 Heterogeneous multicomponent droplet
nucleation was later treated by Kashchiev.14 It was Oxtoby and
Kashchiev21 who in 1994 provided the name “nucleation

Figure 1. Formation of a cluster in a system with constant volume,
temperature, and chemical potential. Refer to the text for the meaning
of the symbols.

∆w ) ∆E - T∆S- µ∆N (1)

∆E ) En + Es + E′o - Eo

∆S) Sn + Ss + S′o - So

∆N ) Nn + Ns + N′o - No (2)

∆Ω ) Fn + Fs + F′o - Fo - µ(Nn + Ns + N′o - No)

) (µnNn - pnVn) + Fs + (µN′o - po(V - Vn)) -
(µNo - poV) - µ(Nn + Ns + N′o - No) (3)

∆Ω ) (µn - µ)Nn + Ωs + (µs - µ)Ns - (pn - po)Vn (4)

d∆Ω ) (µn - µ)dNn + d (σAn) + (µs - µ) dNs-
(pn - po) dVn + Nn dµn + Nsdµs - Vn dpn (5)

d∆Ω ) (µn - µ) dNn + σ dAn + (µs - µ) dNs-
(pn - po) dVn (6)

∆Ω* ) Fs
/ - µNs

/ - (pn
/ - po)Vn

/ (7)
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theorem” and a rigorous thermodynamic proof. All these
developments took place independently of earlier work by
Hill, 22,23 who derived the central relationships in the thermo-
dynamics of critical cluster formation but apparently did not
realize their significance regarding the interpretation of experi-
mental data. Inspired by Hill’s work, Ford24 derived in 1996 a
relationship between the temperature dependence of the nucle-
ation work and the excess energy of the critical cluster (excess
over the new phase). This result was a consequence of the
explicit temperature dependence of the nucleation work, rather
than the temperature dependence of the chemical potential
difference, which had been explored earlier.15,21 This second
nucleation theorem was developed for droplet nucleation from
a single vapor10 and then extended to multicomponent vapors.25

Luijten et al.26 have gone on to investigate the dependence of
the nucleation work on the total pressure for vapor-droplet
systems.

Let us develop the central thermodynamic relationships again.
Starting from eq 7 and using dFs ) - Ss dT + σ dAn + µs dNs,
we obtain

and through cancellation and a Gibbs-Duhem relation dµ )
-so dT + Vo dpo, we get

whereFo andFn are the molecular densities in the old and new
phases, respectively,Vo ) 1/Fo is the volume per molecule in
the old phase, andso is the entropy per molecule in the old
phase. This equation is particular to the Gibbs model of a cluster,
but it happens to be more general, as can be seen when it is
written in the following form:

where ∆S* and ∆N* (as defined in eq 2) are the additional
entropy and molecular content that are gained by the system
through the reversible formation of a critical cluster. We might
call eq 10 the Hill relation, since it was first established by Hill
in 1962.22,23

The nucleation theorem follows from eq 10:

Since the rate of nucleationJ is given by14 J ) J0 exp(-∆Ω*/
kT), wherek is Boltzmann’s constant, this corresponds to the
useful result15,18,21

whereJ0 is the so-called kinetic prefactor in the nucleation rate.
The dependence of measured isothermal nucleation rates upon
the chemical potential of the metastable phase therefore gives
us the change in molecular content of the system associated
with the creation of a critical cluster.

A further consequence of eq 10 is

and this relation is a key step on the way toward the derivation
of the second nucleation theorem.24,10Note that it explores the
full temperature dependence of the nucleation work. The
temperature dependence of the nucleation work which arises
from the temperature dependence of the difference in chemical
potential between the old and new phases was explored as a
consequence of eq 11 by Kashchiev15 and Oxtoby and Kash-
chiev.21 Equation 13 also includes any explicit temperature
dependence.

Let us express d∆Ω* in terms of the pressure and temperature
of the metastable phase instead. We have dµ ) -so dT + Vo

dpo, and so

Furthermore

which simplifies to

where ∆E* is the energy gained by the system through the
creation of the critical cluster, as defined by eq 2, andho ) µ
+ soT is the enthalpy per molecule of the old phase.

The final line in eq 16 demonstrates the generality of the
result beyond the Gibbs model. We can now write down results
that are particularly useful for analyzing nucleation rate data
gathered for a range of temperatures and pressures:

and

Equation 17 is simply a restatement of eq 11 and has been
derived before.27,14 Similar results regarding the pressure
dependence of nucleation rates have also been proved and
exploited,26 and the significance of the pressure dependence was
speculated upon some years ago.28 Equation 18 is new and offers
the possibility of obtaining information about the excess energy
of the critical cluster from knowledge of the temperature
dependence of the nucleation rate of freezing at constant
pressure. It is an analogue of the second nucleation theorem
derived for droplet nucleation from vapors,24,10 the difference
being that in that case the derivative is taken with vapor
supersaturation held constant, while in eq 17 it is the pressure.

d∆Ω* ) -(∆S* - ∆N*so) dT - ∆N*Vo dpo (14)

-T2 d(∆Ω*
T ) ) ∆Ω* dT - T d∆Ω*

) (Es
/ - TSs

/ - µNs
/ - (pn

/ - po)Vn
/) dT +

T(Sn
/ + Ss

/ - (Nn
/ + Ns

/)so) dT +
∆N*VoT dpo (15)

-T2 d(∆Ω*
T ) ) (En

/ + Es
/ - ho(Nn

/ + Ns
/) + poVn

/) dT +

∆N*VoT dpo

) ((En
/ + Es

/ -
Fo

Fn
Nn

/eo) -

(Nn
/ + Ns

/ -
Fo

Fn
Nn

/)ho) dT + ∆N*VoT dpo

) (∆E* - ho∆N*) dT + ∆N*VoT dpo (16)

(∂∆Ω*
∂po

)
T

) -Vo∆N* (17)

(∂(∆Ω*/T)
∂T )

po

) - 1

T2
(∆E* - ho∆N*) (18)

d∆Ω* ) -Ss
/dT + σ dAn

/ + µ dNs
/ - µ dNs

/-Ns
/dµ -

Vn
/dpn

/ + Vn
/dpo - (pn

/ - po) dVn
/ (8)

d∆Ω* )

-(Ss
/ + Sn

/ - so

Fo

Fn
Nn

/) dT - (Nn
/ + Ns

/ -
Fo

Fn
Nn

/) dµ (9)

d∆Ω* ) -∆S* dT - ∆N* dµ (10)

(∂∆Ω*
∂µ )T

) -∆N* (11)

(∂ ln J
∂µ )

T
) (∂ ln J0

∂µ )
T

+ ∆N*
kT

(12)

(∂∆Ω*
∂T )µ

) -∆S* (13)
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Temperature and pressure are convenient control variables
for the collection of nucleation rate data for freezing. The
mathematical complementarity of eqs 17 and 18 is clear.

IV. Data Analysis

The nucleation rate for freezing can be written29,30in the form

where h is Planck’s constant and∆ga is the free energy of
activation for molecular diffusion in the old phase. The terms
in square brackets therefore are a representation ofJ0. The
temperature and pressure dependence of∆ga has been investi-
gated by Jeffrey and Austin,31 and we use their formulation here.
Other parametrizations32 do not include the pressure dependence
that we need. It turns out that partial derivatives of lnJ0 account
for about 10% of the magnitude of the partial derivatives of ln
J, and so it is important to consider them in the analysis.

We now turn to the freezing data that are to be analyzed.
Koop et al.33 have recently compiled a range of data for the
freezing of ice from pure water and aqueous solutions of various
salts. They proposed a parametrization for the homogeneous
freezing rate as a function of the liquid water activity or,
equivalently, the liquid water chemical potential. This is
supported by the observation that data for solutions of various
salts, and at various pressures, collapse onto a single curve of
freezing temperature against activity. Since the chemical
potential of water is known as a function of temperature and
pressure, the equations used by Koop et al.33 provide the freezing
rate as a function of temperature and pressure, which is just
what we need. We focus here on the freezing of pure water
and leave for a later study the consideration of ice formation
from aqueous solutions.

The suggested equation forJ (in units of cm-3 s-1) is

where∆aw ) exp(η/kT) - ai, and

Vi andVw are the molecular volumes in pure ice and liquid water
at zero pressure, respectively,κi and κw are the isothermal
compressibilities, also at zero pressure,∂κi,w/po are their partial
derivatives with respect to pressure, andai ) exp((µw - µi)/
kT), whereµw andµi are the chemical potentials of liquid water
and ice, respectively, again at zero pressure.

The properties of water are given by Koop et al.33 as

all in SI units, withNA equal to Avogadro’s number, andκw )

1.6 GPa-1, κi ) 0.22 GPa-1, ∂κw/po ) -8.8 GPa-2, and∂κi/po

) -0.17 GPa-2. The equations provide nucleation rates as a
function of temperature and pressure, as illustrated in Figure 2.

It is straightforward to evaluate the numerical derivatives of
ln J with respect toT andpo and to obtain the critical cluster
properties with the aid of the given properties of water.

We now need to consider how to present these cluster
properties. The analysis provides∆E* and ∆N*, and these are
model-independent quantities associated with the formation of
the critical cluster. On the other hand, it is illuminating to focus
on the Gibbs model of a cluster and to calculate its size in terms
of Nn

/ and Ns
/. These quantities depend on the position of the

dividing surface, but it is possible to choose a position where
the molecular content of the surface phase is zero. This is the
equimolar dividing surface.13,14 Then eq 17 gives14

where we have made the approximation that the new phase
densityFn (at pressurepn) is given by 1/Vi. We shall refer to
Nn,EDS

/ as the critical cluster sizei* (in molecules).
As for the right-hand side of eq 18, it is convenient to write

the term in brackets in the form

whereLf ) ho - hn is the latent heat of fusion per molecule
andhn andVn are the enthalpy and volume per molecule in the
new phase at the pressurepo. Ex

/ is termed the excess energy,
defined by

whereen is the energy per molecule in the new phase at pressure
po. The excess energy is the energy of the cluster minus the
energy the component molecules would have in the bulk new
phase at the same temperature and pressure. The last term in
eq 24 can be neglected, sincepoVn ∼ 10-3 kT at room
temperature and pressure for a condensed phase, and because
(Nn

/ + Ns
/) is less than 103 in the calculations to be described

shortly andVn
/ e (Nn

/ + Ns
/)Vn, the last term is probably no

larger thankT. If we now focus on the cluster defined by the
equimolar dividing surface, then

Figure 2. Dependence of freezing nucleation rate upon temperature
and pressure, according to the Koop et al.33 parametrization.

J ) [Fo
kT
h

exp(-∆ga/kT)] exp(-∆Ω*/kT) (19)

log10J ) -906.7+ 8502∆aw - 26924(∆aw)2 +

29180(∆aw)3 (20)

η ) (Vw(po - 1
2
κwpo

2 - 1
6

∂κw

∂po
po

3) -

Vi(po - 1
2
κipo

2 - 1
6

∂κi

∂po
po

3)) (21)

Vw ) 10-6

NA
(-230.76- 0.1478T + 4099.2/T + 48.8341 lnT)

Vi )
10-6

NA
(19.43- 2.2× 10-3T + 1.08× 10-5T2)

µi - µw ) 1
NA

(210368+ 131.438T - 3.32373×

106/T - 41729.1 lnT) (22)

(∂ ln J
∂po

)
T

) (∂ ln J0

∂po
)

T
+ Nn,EDS

/
(Vw - Vi)

kT
(23)

∆E* - ho∆N* ) Ex
/ - (Nn

/ + Ns
/)Lf + po(Vn

/ - (Nn
/ + Ns

/)Vn)
(24)

Ex
/ ) En

/ + Es
/ - (Nn

/ + Ns
/)en (25)

(∂ ln J
∂T )

po

) (∂ ln J0

∂T )
po

+ 1

kT2
(Ex

/ - i*Lf) (26)
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The temperature derivatives ofJ0 are available from the Jeffrey
and Austin parametrization31 of ∆ga, and the (temperature
dependent) molecular latent heat of fusion of water is obtainable
from

and eq 22. Hence, the excess energy of the critical cluster
(defined according to the equimolar dividing surface) may be
extracted. It is the cluster energy minus the energy the
component molecules would have in a bulk new phase at the
same temperature and pressure as the original phase. It is a
useful quantity to consider since in the limit of large cluster
size, it may be identified with the surface energy. For smaller
clusters, which might not possess any similarity to the bulk
condensed phase, it is not so straightforward to identify it.
Nevertheless, it controls the temperature dependence of the
nucleation rate.

Using the nucleation data and material properties provided
by Koop et al.33 and Jeffrey and Austin,31 together with eqs 23
and 26, a plot of excess energy against cluster size can be
constructed, as in Figure 3. The points labeled Ex are the excess
energies, normalized by the molecular latent heat of fusionLf,
which is on the order of 0.042 eV. They have been obtained
for temperatures in the range 230-240 K and for a pressure of
105 Pa.

The critical cluster sizes lie in the region of 600-800
molecules. Each point corresponds to a critical cluster at a
particular temperature, and this might explain why some clusters
do not have a unique excess energy. However, the higher excess
energies refer to clusters at lower temperatures, which is perhaps
counterintuitive. Alternatively, the results may be a consequence
of the manner in which the data have been fitted, and the true
temperature dependence ofEx might be smaller. We shall come
to the possibility of inaccuracies in the fits to data at the end of
this section. In any case, the results certainly suggest that the
excess energy for a cluster of about 600 molecules lies in the
region of 200Lf. This is very reasonable if one takes the view
that the cluster is globular, with the center very much like bulk
ice and with about (36π)1/3Nn

2/3 of the molecules residing at the
surface,16 in a bonding environment halfway between that of
the ice and water phases. The excess energy would then be about
350 × (Lf/2) or 175Lf, in reasonable agreement with the data.
Furthermore, the excess energy rises with size, which reflects
the increase in surface area.

This behavior can be contrasted with the predictions of
classical nucleation theory.34 This is based on the Gibbs cluster
model with a surface tension equal to the plane interface value,
chosen here to be32 σ ) 10-3 (28 + 0.25(T - 273)) J m-2.
Classical nucleation theory suggests that ln(J/J0) ) - 16πσ3

Vn
2/(3kT(µ - µn

o)2), whereµn
o andVn are the chemical potential

and the molecular volume for the new phase at pressurepo.
When this expression is inserted into eqs 23 and 26, we obtain
critical sizes which are on the order of 100 and excess energies
which are negative, as shown by the points labeled Exc in Figure
3. It is hard to see how having a cluster which is more strongly
bound than its component molecules would be in bulk ice is
compatible with the classical picture of the cluster as a scaled
down version of a crystal with bulk material properties. It is a
symptom of the failure of the classical theory of freezing to
account for experimental data.

It is possible to go further and extract the excess free energy
of the critical cluster. We have

where∆µ ) µ - µn
o, with µn

o again referring to the chemical
potential of the new phase at the pressure of the old phase. For
the water data,∆µ ) µw - µi. Also, Fx

/ ) Fn
/ + Fs

/ - (Nn
/ +

Ns
/)fn, with fn equal to the free energy per molecule in the new

phase at the pressurepo. It is the excess free energy; the free
energy of the cluster minus the free energy its component
molecules would have in a bulk new phase at the pressure of
the old phase.

The second line in eq 28 demonstrates the generality of the
result. The last line, once the final term has been neglected
(following arguments similar to those used with regard to eq
24) and when the equimolar dividing surface has been chosen,
is equivalent to the familiar result16

In the classical theory of nucleation,Fx would be represented
by σAn, with σ given by the plane surface interfacial free energy
and An by the surface area of a sphere of volumei*Vn. By
inserting data forJ and using the Jeffrey and Austin model31 to
evaluateJ0, eqs 28 and 29 can be used to extract the excess
free energy of the critical cluster. These values are plotted in
Figure 3 and labeled Fx. Once again, the results are satisfac-
tory: they lie below the excess energies, implying a positive
cluster excess entropySx

/ ) (Ex
/ - Fx

/)/T to be expected of
globular clusters of new phase with disorder at the surface.
Furthermore, the excess free energy and the excess entropy both
increase with cluster size.

The same analysis can be done for classical nucleation theory,
yielding the excess free energies labeled in Figure 3 as Fxc. In
contrast to the excess energies these are positive. Clearly, the
classical theory implies a negative excess entropy, which again
is rather inconsistent with the classical picture. It is striking,
however, that the excess free energy, when extrapolated up to
the cluster sizes which really appear to be acting as the critical
nuclei, is not dissimilar to the extracted excess free energies
labeled Fx. Equivalently, the extracted free energies may be
used to calculate an effective surface tensionσeff which is
compared with the bulk surface tension in Figure 4. This is in

Figure 3. Excess energies and free energies, for clusters of critical
size, extracted from data (Ex and Fx) and calculated from the classical
theory (Exc and Fxc). The temperature ranges from 230 to 240 K. All
energies are shown in units of the latent heat of fusion per moleculeLf

evaluated at the appropriate temperature.

ho - hn ) -T2(∂((µw - µi)/T)

∂T )
po

(27)

-kT ln (J/J0) ) ∆Ω* ) Fs
/ - µNs

/ - (pn
/ - po)Vn

/

) ∆F* - µ∆N*

) Fx
/ - (Nn

/ + Ns
/)∆µ + po(Vn

/ - (Nn
/ + Ns

/)Vn)

(28)

∆Ω* ) Fx
/ - i*∆µ (29)
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contrast to the rather greater differences between the classical
excess energy and extracted values. Note, however, that the
effective surface tension might be reflecting a size dependence
as well as the temperature dependence given. The critical sizes
in the middle of the temperature range are smaller than those
at the extremities.

There is one more aspect to consider in this analysis, and
that is the sensitivity of the results to any inaccuracies that might
exist either in the Koop et al.33 fit to the freezing nucleation
rate or in the fits to physical data that have been inserted into
the theoretical formulas. We have examined this in the following
simple way. If we multiply the numerical derivatives of lnJ
with respect to temperature at constant pressure by a uniform
factor of 1.1, the values of excess energy change by about 20%,
as shown in Figure 5 as open circles. Similarly, if we multiply
the numerical derivatives with respect to pressure at constant
temperature by a factor 1.1, then the plot of excess energy
against size changes to the triangular points. We believe that
such factors overestimate the uncertainty in the fits made by
Koop et al.33 so that our uncertainty in excess energy at a
specific cluster size is within 20%. In light of this, we cannot
be definite about the apparent variation in cluster excess energy
with temperature discussed earlier.

V. Conclusions

We have used the thermodynamics of critical cluster forma-
tion to study the properties of small ice clusters in supercooled

water. The key eq 10 indicates how the work of formation
depends on the external chemical potential and temperature. The
dependence on the applied pressure and temperature can then
be expressed in eq 16. The analysis produces information about
the fluctuations in energy and molecular content associated with
the formation of a critical cluster of the new phase within the
system. These fluctuations have been interpreted using the Gibbs
model of a cluster so that we can deduce the size, excess energy,
and free energy of a critical cluster, the one which is equally
likely to grow or to decay in the prevailing conditions.

We have studied freezing nucleation data parametrized by
Koop et al.33 The results of the analysis seem to be physically
reasonable, in that the excess quantities are consistent with a
model of the clusters as compact objects. Thus, a cluster of
600 water molecules has an excess energy of 200Lf, with an
uncertainty of probably less than 20%, whereLf is the molecular
latent heat of fusion, and this is consistent with a roughly
spherical ice crystallite with about 350 molecules lying at the
surface. It would be instructive to compare these conclusions
with simulations of water crystallization.35 In any case, the
present analysis offers a unique experimental viewpoint on the
properties of small ice clusters in supercooled water.

In contrast, the same analysis of rates predicted by the
classical theory of freezing nucleation produces odd features,
such as negative excess energies. The classical critical sizes are
also far smaller than the critical sizes suggested by the data.
This merely reflects the failure of classical theory to account
for the rate of homogeneous freezing.32 We have estimated an
effective ice-water surface tension which can account for the
data, when used in conjunction with physical data provided by
Koop et al.33 and Jeffrey and Austin.31 This might be useful
for calculations of the freezing of water droplets in the
atmosphere.29,30,34,36

In carefully designed nucleation experiments, the rate of
production of micron-sized crystals, detectable experimentally,
corresponds to the rate of formation of critical clusters, which
are usually far too small to be seen. Systems with such an
amplification of a microscopic event are often deliberately
engineered in the laboratory to gain insight into events on the
microscopic scale. The familiar process of the nucleation of a
phase transition is a good example of such a system.
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