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Abstract. For the analysis of the release of fission product aerosols from reactor cor- in 
a severe accident, it is necessary to understand the process of homogeneous nucleation of 
droplets from a supersaturated vapour, including the dependence on system pressure, 
which can vary greatly depending on the type of accident. A model of the effect of carrier 
gas on the nucleation process is presented, based on the changes to the energy distribution 
of nucleating vapour molecule clusters induced by~callisions with carrier gas molecules. 
The rate of nucleation is altered since the cluster decay rate is strongly energy dependent. 
The approach is compared with previous treatments of the problem, illustrating the 
impottance of using an equilibrium cluster energy distribution which goes beyond a 
Gaussian approximation. and clarifying previous confusion between cluster temperature 
and cluster energy in the literature. Calculations of nucleation rates are performed for 
n-nonane in argon and water vapour in air, and show that an analytic approximation gives 
a reasonable approximation to numerical results. However, the resulting pressure depen- 
dence of the nucleation rate is weaker than has been observed experimentally suggesting 
that additional mechanisms operate. 

1. Introduction 

The initial formation of clouds by aerosol nucleation is a process which is most manifest 
in the atmosphere. It generally occurs in a heterogeneous fashion by growth on existing 
tiny nuclei in the nanometre size range. Homogeneous nucleation, where existing nuclei 
are not involved, can only occur if large supersaturations can build up in vapours. 
This can happen generally if large temperature differences, and consequently very 
large changes in equilibrium vapour pressure, exist in a system. It would therefore be 
an important process in possible nuclear accidents where fission product vapours 
released from an overheated core would condense into an aerosol in the large tem- 
perature gradients surrounding the core. There is presently no satisfactory theory with 
which to calculate nucleation rates. In this paper, we obtain and solve equations which 
describe thermal fluctuations as well as number fluctuations in the nucleation process. 

With improved techniques using expansion and diffusion chambers, a number of 
measurements of homogeneous nucleation rates have been made in recent years [l-61. 
Collectively for nonane [7], the results show that the temperature dependence of the 
rates differ widely from predictions of classical theory [SI, and those of the statistical 
mechanical treatments of Lothe and Pound [9] and Reiss er ai [IO]. Furthermore, there 
have been strong experimental indications that the nucleation rates can be dependent 
on the presence and pressure of a carrier gas. Steinwandel and Buchholz [ 111 found 
a dependence of the argon nucleation rate, on the presence of helium, and both an 
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increase [12] and a decrease [7] have been reported in the nucleation rate with an 
increase in pressure. 

As the predictions of classical nucleation theory allow for practically no dependence 
of the nucleation rate on pressure, the experimental results suggest that a new element 
is needed in the theory. This could be energy fluctuations arising from the balance 
between energy transfers to nucleating clusters from colliding (but non-sticking) carrier 
gas and vapour molecules, and latent heat transfers from condensation and evaporation. 
The pressure dependence of the nucleation rate could come from changes in the energy 
distribution of the clusters when the number of gas molecules is changed. The sensitivity 
to temperature of the cluster decay rate suggests that a considerable effect could arise 
from relaxing the requirement that clusters should acquire the ambient gas temperature, 
the characteristic of the existing 'isothermal' theories [S-lo]. 

The initial treatment of energy fluctuations for clusters by Feder et al [13] led to 
only a relatively small correction to isothermal theory with the nucleation rate increasing 
with pressure. Recently, a different treatment was proposed [14,15] in which there 
would be a large suppression in the isothermal rate. The treatment starts with rate 
equations for the concentration of clusters of a given number of molecules and energy, 
and similar equations, albeit with energy transfers partly treated by the Fokker-Planck 
approximation, have been given by Grinin and Kuni 1161. 

The contrast between the treatments has led us to re-examine the basis of two- 
dimensional rate equations for nucleation theory. We shall find that all existing 
treatments have deficiencies connected with the relation between energy and tem- 
perature for small clusters. Basically, the assumption of a Gaussian representation of 
a fluctuating energy is shown to be inadequate. This has a more serious consequence 
for the treatment of Ford and Clement [14, 151 whose conclusion that there are large 
reduction factors from classical nucleation rates, is found to be incorrect. The expansion 
method adopted by Feder et aI 1131 gives cluster decay rates which violate the 
requirement that they should be independent of the temperature of the surroundings, 
but we find that their overall results for nucleation rates are close to numerically 
calculated values. 

Homogeneous nucleation theory suffers from uncertainties in its starting point, and 
in section 2 we attempt to remove some of the uncertainty by describing the basic 
physical assumptions necessary to set up a rate theory. These apply especially to the 
nature and definition of a cluster and the relationship between temperature and energy. 
Whilst many of our results apply in general, we need a specific model with which to 
perform calculations. The model chosen here involves cluster molecules interacting 
via a square well potential which gives results which can be interpreted on the basis 
of the familiar liquid drop model and its capillarity assumption. The statistical 
mechanics of this model has been investigated elsewhere [17], and we quote the results 
to be used in this paper. 

In section 3 we obtain rate equations for cluster growth in the two dimensions of 
number of molecules and cluster energy. The rate at which the cluster energy is changed 
by collisions with gas and vapour molecules is carefully specified. The spontaneous 
decay rate of a cluster, which also describes the associated energy change, is obtained 
from the time reversal invariance of an equilibrium state at the cluster energy. This 
requires a knowledge of the equilibrium cluster population which, in our square well 
model, is specified in section 2 from statistical mechanics. The resulting decay rate 
satisfies the important requirement that it is independent of the properties of the 
surrounding vapour, namely temperature and supersaturation. 

J C Earrett et al 
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Methods of solution of the rate equations are described in section 4 and the appendix 
and we obtain numerical results for n-nonane in argon and water droplet nucleation 
in air. These are compared to the predictions of the theory of Feder et a1 [ 131 and 
approximate methods for solving the equations are discussed. 

! 2. The physics of clusters 

2.1. Analogy with nuclear structure 

The nature of liquid microclusters which occur in a vapour, particularly during 
nucleation, continues to attract theoretical attention. A thermodynamic formalism has 
been developed by Nishioka [IS], and Reiss and his co-workers [19] continue to 
approach the problem from a statistical mechanics point of view. In addition to 
describing other approaches, their paper [19] addresses the central problem of the 
exact definition of a cluster. This problem also ailects our dynamical-approach in 
which we require rate equations for cluster populations. The use of a cluster density 
for i-molecule clusters presupposes that these objects are well defined. 

It may be useful to make an analogy to nuclear physics where the study of unstable 
clusters (compound nuclei) is more advanced than in molecular physics. This is because 
an unstable nucleus of n + 1 nucleons can readily be made experimentally by firing a 
high energy projectile, usually a nucleon, onto a target of stable nuclei with n nucleons. 
Analogous scattering experiments in molecular physics would require atomic or 
molecular beams. Both in nuclear and molecularphysics, there are short-range attractive 
forces with shorter-range repulsion, and a liquid drop model has been used successfully 
to describe heavy nuclei. Both forces saturate so that, above a minimum number of 
particles, the droplet volume is approximately proportional to the cube of the radius 
and the binding energy consists mainly of a volume term and a surface term. 

The concept of a ‘compound nucleus’ was introduced by N Bohr and the theory 
of compound nucleus reactions is described in Blatt and Weisskopf [ZO]. The essential 
points, which have been directly verified by experiment, are: 

(a) After an initial collision in which a nucleon is captured its energy is rapidly 
shared out amongst all available modes. Grinin and Kuni [16] give an argument that 
the same applies to molecular clusters. The possibilitythat the initial nucleon is scattered 
and escapes directly (a ‘direct reaction’ in nuclear physics) is analogous to allowing 
for a sticking probability less than unity in molecular physics. 

(b) In the shared energy state, all the nucleons essentially occupy bound states in 
a common potential well. When intemal collisions result in a nucleon reaching an 
unbound state with an energy significantly larger than the average, it can then escape. 
However, this takes many collisions so that the lifetime of the state is much longer 
than the transit time of a nucleon across the nucleus. This results in exponential decay 
with a decay probability independent of time, an essential requirement for rate 
equations for an unstable object. 

(c) Because of the energy sharing, the decay probabilities of a compound nucleus 
do not depend on its mode of formation, only on the energy of the state. Decay rates 
are related to formation rates by time reversal invariance and are mainly given by the 
densities of states at the appropriate energy. 

Experimentally, these ideas are well verified for compound nucleus reactions. We 
believe that the same physics applies to molecular clusters relevant to the nucleation 
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process above a certain minimum size. Sequential collisions affecting the clusters are 
independent because of the low density of the vapour-gas system, and the decay 
probability at any given time depends only on the energy of the cluster. It can be 
related to the formation rate by time-reversal invariance, or detailed balance, as shown 
explicitly in section 3.2. 

For a few molecules, as for a few nucleons, the description can break down as 
scattering molecules do not stay together long enough to form energy-shared states. 
Of course, bound dimers and trimers,~etc may be formed which can be treated explicitly, 
but it is not obvious that bound states, rather than multiparticle scattering states, are 
the main stepping stones to larger clusters. If the energetics and kinetics of few-molecule 
clusters play an important part in the nucleation process in general, it would indeed 
be a formidable task to calculate the.relevant quantities for most molecules. 

J C Barrett et a1 
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22. Equilibrium cluster populations 

If the above physics does apply, it is legitimate to consider a cluster concentration 
Ci(E), of clusters containing i vapour molecules at a total energy E in a vapour-gas 
mixture. The evolution of Ci(E) in time is considered in the next section, and we can 
obtain growth rates from collisions with vapour molecules. In the absence of any other 
information, however, decay rates can only be obtained from detailed balance and 
concentrations in an equilibrium state. For this we tum to statistical mechanics but, 
since the equilibrium is then defined by a temperature, T, we first have to discuss the 
relation between energy and temperature in the present context. 

We want to describe a system with a very large number of molecules in which there 
is a much smaller, but still large, number of clusters. In an overall equilibrium, the 
system has a well-defined temperature, T, so that there is a partition over energy solely 
according to the partition function and density of states at a given energy. The formal 
separation of the partition function into those for clusters is a problem addressed in 
[19], but here we generally write 

I 

Crq(E) =ai@) exp(-E/kT)crq/q. (2.1) 

where k is Boltzmann’s constant, Q , ( E )  is the density of states appropriate to a cluster 
of i molecules, and cy is the total cluster concentration for size i so that the cluster 
partition function is 

qi = Im d E  a , ( E )  exp(-EjkT). (2.2) 
fmtn(il 

The basic detailed balance relation (see (3.14)) is expressed in terms of cluster 
concentrations at given energies and must lead to decay rates which are independent 
of any overall temperature. Indeed, it is only in equilibrium that clusters can be regarded 
as having a distribution of energy states corresponding to a specific temperature. In a 
nucleating situation, whilst it is probably legitimate to describe the monomers and gas 
as having a well-defined temperature, the same may not be true for clusters. We know 
that large growing nucleated droplets can have a temperature above this value [21], 
but it is not necessarily true, as was assumed previously in [13] and [14], that small 
clusters have a well-defined temperature, or even if they do, that the detailed balance 
relation can be expressed in terms of temperature rather than energy. The question is 
related to the adequacy of the following Gaussian expression for a cluster population 
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with a mean energy corresponding to a temperature T 
( E - E ) 2  C:s(E) = ( 2 . i r i ~ , , k T ~ ) - ~ / ~ c : ~  exp [ - ] 2icwkT2 (2.3) 

where c, is vapour molecule heat capacity at constant volume for molecules in the 
cluster. We return to this subject in section 5. 

According to the law of mass action [ 101, the total number of tclusters in equilibrium 
is given by 

e;'= 4sc1/41)i (2.4) 

where c1 is the monomer concentration and the monomer partition function is 

27rmvk 3/2 
4 1 = ( i - )  4Y (2.5) 

with m, the molecular mass, h Planck's constant and qy an internal molecular partition 
function. 

To proceed further, we adopt a cluster model (shown in figure 1) which corresponds 
to a mean field treatment [22] of two-body potentials of a square well form giving a 
cluster potential energy 

Ui = -ai+ bi2". ~ ~ (2.6) 

Details of this model and its uncertainties as far as potential energies are concerned 
are discussed elsewhere [17].  In the spirit of classical nucleation theory, we can identify 
a and b with the bulk volume and surface energies per molecule, i.e. a = m,L and 
b = Alu where L is the latent heat, U the bulk surface tension, A, = ( 3 6 7 ~ @ ' / ~  the 
effective surface area per molecule and uo= mJpt where pt is the bulk liquid density. 

The model leads to the following form for qi 

where uo is the volume per molecule in the cluster and the value of S depends on the 
exact definition of the cluster ( 8  = 3 for a cluster centred on the centre of mass and 
S = O  for a cluster centred on an individual monomer [17 ] ) .  We assume that each 
vapour molecule has 2cv, f k = 2"- independent degrees of freedom, so the density of 
states is proportional to ( E  - V;)"~~-'. From (2.1) and (2.2) we then obtain 

Cluster Potential 

i molecules 

Figure 1. Liquid drop cluster model with square well potential. 
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Figure 2. Comparison between exacl energy distribution of a cluster based on the square 
well model, and a Gaussian approximation. 

Multiplying (2.8) by E and integrating (for Vi E <CO) gives the mean i-cluster energy, 
Et = ic,T+ U;. In figure 2 we compare equilibrium distributions from (2.3) and (2.8) 
at i = 50. We have taken a = 18.14kT b = 8.38kT c,= 3k, and u0=3 x m3, corres- 
ponding to the bulk properties of liquid water at 20 "C. The Gaussian form deviates 
from the exact form towards the extremities of the distribution. The implications of 
this will become apparent later. The C:q(E) are used in the next section to derive 
coefficients in the evolution equations for the cluster populations. 

3. Rate equations for cluster growth 

The evolution equation for C@) can be written 

I + [ &(E')P,(E'+ E)Ct(E') dE'-Dj,(E)Cj(E) 

+(1 -sn )  [ ~;(E ' )Pv(E '+E)Cj(E ' )  dE'-Bz(E)Cj(E)  . (3.1) 1 
The first term on the right represents the increase in C,(E) from clusters of size (i-1) 
gaining a monomer. &(E, E,) is the rate at which monomers with energy E,  collide 
with i-clusters of energy E and sA is the sticking probability (in general this is also a 
function of E and E,, but here it is assumed independent of energy). The second term 
on the right represents the increase due to clusters of size ( i + l )  losing a monomer, 
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ai(E, E,) being the rate constant for the emission of a monomer of energy E, by an 
i-cluster of energy E. The third term represents the decrease in C J E )  from i-clusters 
gaining or losing a monomer. The E J E )  is related to aj(E, E,) by 

& ( E ) =  u;(E, E,) dE, s (3.2) 

and the same relationship holds between &E) and &(E, E , ) .  The fourth term rep-~ 
resents the change in Cj(E) due to collisions with gas molecules; &&E) is the collision 
rate for gas molecules with an i-cluster of energy E and PE@'+ E) is the probability 
that a cluster with initial energy E' has energy E after the collision. Similarly, the final 
term represents the change due ~ to collisions with the fraction (1 -sA)  of vapour 
molecules that do not stick to the i-cluster but which may exchange energy with it, 
P,(E'+ E) being the probability that a non-sticking collision with a vapour molecule 
causes a transition in cluster energy from E' to E. 

Some care must be taken in specifying the limits of integration in (3.1), since there 
is a minimum allowable i-cluster energy, equal to the minimum interaction potential 
energy U- which in our model is simply U:. hovided we specify that 

C,(E)=O ' for E < U y  (3.3) 

and also that E, 2 0, we can allow the limits to range from minus infinity to plus 
infinity. Note, however, that in a(E, E,) we must have O < E , < ( E -  U y 2 )  and these 
limits should be used in determining & ( E )  from (3.2). I 

3.1. Energy transfer from gas molecules 

We now consider the determination of pig and P,(E'+ E )  from equilibrium statistical 
mechanics. Individual gas molecules are treated as classical systems with 2 c J k  
independent degrees of freedom, where cv, is the gas molecular heat capacity. The 
gas-cluster collision rate depends on cluster energy since the clusters are in motion. 
However, for cluster sizes of interest ( i>  lo), this dependence is weak and we ignore 
it, so /??, is independent of E and equal to the total number of gas molecules striking 
a stationary cluster with surface area Ai per second. This is given by the usual kinetic 
expression 

where p, = n,kT is the gas pressure and m, the mass of a gas molecule. 

with a cluster is 
The rate at which gas molecules with total energy between E, and E,+dE, collide 

where E is the gas molecule kinetic energy, and Ebg= cbg/k= Gg/k+f ,  the extra 4 
arising because molecules with kinetic energy E have speed ( 2 ~ / m ~ ) " ~ ,  so fast molecules 
collide more frequently. The gas molecule and cluster are assumed to form a micro- 
canonical (constant energy) system so the probability of any decay is proportional to 
the density of states of that decay. The density of states of the gas molecule to be 
emitted with total energy between E2 and E,+dE, is proportional to E&-'dE2 and 
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that for the cluster to have energy E is CLi(E) so the correctly normalized probability 
that the system with energy (E'+EI) decays to this final state is 

J C Barrett et ai 

.. 
i Our find expression for P,(E'+E) is found by multiplying (3.5) and (3.6) and 

integrating over all values of E,  and Ez that satisfy E'+ E, = E + E2, 
r m  

We can use the properties of the delta function S(x) to perform one of the integrals, 
say over E,, but this affects the lower limit of the remaining integral: 

Since the integrand is symmetric in E and E', it follows that the detailed balance 
condition is satisfied in equilibrium, i.e. 

Pg(E'+ E)C:'(E') = PB(E + E')CFq(E). (3.9) 
Using our square well model of a cluster, with CLi(E) obtained from (2.1) and (2.8), 
we can evaluate the integral in the denominator of (3.7) and obtain ' 

X S(E'+E,  - E  -Ez ) .  (3.10) 

This form is the most convenient for evaluating integrals over E, which is the procedure 
used in solving the rate equations. In particular, the mean energy transfer from an 
i-cluster with energy E' is 

(3.11) 

, where E, = i&T+ U, is the i-cluster mean energy at temperature T. 
We use a similar model for energy transfer by non-condensing vapour molecules 

so pi is given by (3.4) with the vapour pressure pv in place of pg  and m, in place of 
m,. Similarly P,(E'+ E )  is given by (3.7) (or (3.10) for the square well model), with 
?bbv=cw/k+$ in place of EbZ. 
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3.2. Cluster growth and decay rates . .  

As in the previous subsection, we ignore cluster motion. The monomer-cluster collision 
rate p j ( E ,  E,) is then independent of E and is given by analogy with (3.5) 

where, as before, Zbv= c v , / k + t .  Equation (3.12) is normalized so that 

(3.13) 

The key step is to obtain the decay rate a,(E, E , )  from the equilibrium detailed balance 
condition 

(3.14) s&-i(Ei)C:!i(E - E l )  = a,(E, Ei)C;q(E). 
Using (2.1), (2.4) and (3.12), we obtain from (3.14) 

Since q, is proportional, to T"", the decay rate is independent of both the vapour 
temperature and the supersaturation external to the cluster, as is required. 

' 

For our liquid drop cluster model, with Cr4(E) given by (2.8), we obtain 

(3.16) 

(where we have used (2.4) and (2.7) to eliminate c ~ , / c ~ ~ ) .  We can integrate (3.16) 
over E ,  (with 0 s E, S E - U+,) to obtain 

Using the Gaussian approximation for Crq(E), equation (2.3) in (3.14), together with 
(3.12) for &(E,) gives the following approximate expression for the decay rate 

(3.18) 

For the square well model, l?j=icv,T+ U, and qlqG-,/qi= 
( l - l / i ) i+,-S exp((Ui- Uf-J /kT) / v0 .  The integral of ayA@, E , )  over E , ,  which we 
denote by EFA(E) ,  can be performed analytically if ZbV is an integer; alternatively, it 
can be evaluated numerically for any Zbv. Figure 3 shows the variation of & ( E )  and 
ai ( E )  (with s, = 1) for the case shown in figure 2 (i.e. typical of water at 20 "C). 
Although the Gaussian approximation for the equilibrium energy distribution gives 
reasonable results in the region of the peak of C:q(E), it leads to an overestimation 
of the decay rate away from the peak, particularly at low energies. This has implications 
as regards the nucleation rate. 

- -CA 
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Figure 3. Comparison between exact cluster decay tale and form based on a Gaussian 
approximation (CA) for the cluster energy dislribution. 

It is interesting to consider the behaviour of C;(E) for large i. If we define T by 
icwT = E - U,, we find for large i, from (3.17) 

- pve( T) exp(2 b/  (3 k7i1j3)) -vGQG (3.19) 

where the first right-hand side follows from (3.17) using the approximations, valid for 
large z, r( 1 + z) = z' e-' and (1 -x /z) '  = eCX and the final form follows using equation 
(2.6) for U,, since the equilibrium vapour pressure for this model is p,.(T)= 
(kT/evJ e -a'kT [17]. If we identify b with the bulk surface energy per molecule, 
b = uA,, then the final exponent in (3.19) is the Kelvin factor giving the modification 
of the vapour pressure over a curved surface of radius ri = (3~,,i/4?r)"~. The decay 
rate given by (3.19) is just that from a droplet of radius ri at temperature T, as suggested 
previously [14]. Note however, that T is simply a parametrization of the energy E, and 
not a true temperature. 

' 

Finally, it is useful to define here a quantity &(T i )  by the relation 

c:'(T,)s,(T,) = Ei(E)CTq(E, T i )  dE (3.20) 

where C;q(E, T i )  is the equilibrium cluster distribution in a vapour at temperature r- 
(given by (2.1) with T =  Ti, noting that cfq and qi should also be evaluated at T =  Ti) .  
Integrating the detailed balance condition, (3.14), over E and E, (bearing in mind the 
condition (3.3)) gives 

6;(~)=pj-,C;!,/c? (3.21) 

I-,-, 

where the terms on the right-hand side are all evaluated at T =  Ti. 
Multiplying (3.14) by E and integrating over E and E, gives 

Ci(E)ECTq(E, Ti )  d E  = ~ i - l ~ ~ ! l ( & - l (  Ti )  + cbvTi) (3.22) 
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where ?;) = kT: d(ln qj( ?;))/d?; is the mean energy of an i-cluster in equilibrium 
at temperature T.  The results (3.20)-(3.22) are not restricted to any particular cluster 
model. 

4. Nucleation rates 

The steady-state cluster energy distribution C y ( E )  is the solution of 

where, for simplicity, we have assumed sA = 1. Equations (4.1) must be solved subject 
to the boundary conditions C:I(E) = C;q(E)  (equilibrium energy distribution of 
monomers) and 

lim C:"(E)+O 

(no large droplets present). 

limit on E in orj(& E,) )  

1-m 

Once C y ( E )  is known, the steady-state flux J can be found from (noting the lower 

m 

J = I  [ P ; - , C ~ , ( E ) - r u j ( E ) C ~ ( E ) ] d E .  (4.2) 
/-I  

We first discuss an approximate method to determine the nucleation rate which gives 
analytical results and then consider the numerical solution of (4.1). 

4.1. Approximate analytical solution 

We assume that the steady-state i-cluster distribution has the same energy dependence 
as an equilibrium distribution at temperature ?;, that is, we write 

(4.3) 

Using this in (4.2) we obtain 

J =  pi-,( T)cLl-G;( T ~ ) c ?  (4.4) 
where we have used the definition of &(T;), equation (3.20). Multiplying (4.1) by E 
and integrating over all E gives a one-dimensional heat balance relation 

/ L ( T ) [ E ! - d  T-*)  + c,,Tlc:-, + Gj+,(T+,)El(T;+,,c::, 

- [p j  ( T)Ej ( Ti) + Gj ( ?;)(E+ 1 ( ?;) + c,, ?;) ] CY - Q c ~  = 0 (4.5) 

where we have used (3.22). Q is the heat transfer away from the cluster due to gas 
molecule collisions, which for small temperature differences ( Tj - T )  can be written 
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The value of A depends on the extent of thermal accommodation between clusters and 
colliding gas molecules: for complete accommodation, A = ic, J(icv.+ cbg) - 1 for large 
i (cvc is the molecular heat capacity for molecules in the cluster). 

Using (4.6) and (4.4), written for i and (i+l), in (4.5) gives 

J C Barrett et a1 

J[Ej - , (T i ) -E j (T)+  Cb"T, ]  

= pj-l( T ) c ~ " (  Ti - T)c:"-, + /T&bs( T, - T ) c ~  + &I( T )  

x [Ej+(Ti )  - Ei~l(T,~*)lcy~l - oi,+l( T,+,)[Ej(T,+l) - E,(T)lcy+l. (4.7) 

The terms on the right represent the heat transfer from the cluster due to collisions 
with vapour and gas molecules and the energy required to heat up growing clusters 
and cool down evaporating clusters. Given a form for E,( q), and assuming a maximum 
cluster size i = N, equations (4.4) and (4.7) form a set of coupled non-linear equations 
for the 2(N - 1) unknowns e?, . . . , c z ,  Tz, . . . , TN. We can obtain an approximate 
analytical solution by following the procedure used by Kantrovitz [23]. First we note 
from the law of mass action (2.4) and the definitions of G,(T,)  (equation (3.21)) and 
of Ej(T,) that kK'=E,-,(T,)-E~(Z)+E,(T,) where 

(4.8) 

With the asymptotic form of &(T,), equation (3.19), this K' is the same as that used 
in [14]. Using the Clausius-Clapeyron equation for pv. this K' is 

We then expand (4.4) to first order  in^ (T,  - T )  to obtain 

Pi-,( T)c:", -&(T)Cy-J 
d&,( T)/dT 

C y ( q  - T )  = 

(4.9) 

where the final form follows from using (4.8) and taking the continuum limit (i.e. 
replacing f ( i )  -f(i-  1) by dfldi We similarly expand the energy differences in (4.7) 
to first order (i.e. $( Ti+,) -Ej( T,) = ic,(T,+l - z), etc). Then, using (4.4), (4.8) and 
(4.9) in (4.7) and again taking the continuum limit we obtain, 

1 & d T ) f b v +  &Afbg k( K'/ T +;) + (e,+ f k  - cbv)( T, - T) /  T + 
( K ' /  T -$,a,( T )  

+ "(ip#cP-[-(A)+ d d c? J I ) .  
K'1T-t di di di e;' Gj(T)c;' (4.10) 

To a very good approximation, we can ignore the term involving (T,  - T )  on the 
left-hand side. An approximate solution can be found by also ignoring the last term 

I 
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on the right and integrating, using the fact that e:" has a deep narrow minimum at 
i =  i* where (S, .=p, . )  to obtain 

(4.11) 

where S =pv/pv.( T )  is the saturation and Jlso = (JY di/(/3Gc:q))-' is the usual isothermal 
flux ignoring any difference between the equilibrium and steady-state energy distribu- 
tions. Equation (4.11) is very similar to that derived by Feder et af [13], if we use the 
asymptotic form for K' given after (4.8). The principal difference is that Feder et a1 
have [ K ' / T - i ] *  in place of our factor [ (K ' /T)* - i ] .  

It remains to estimate the magnitude of the final term in (4.10) which we ignored 
in deriving (4.11). This can be done by substituting the solution for c$ of (4.10) without 
this term, into this term and comparing it with the terms on the left-hand side. It 
appears that this term is small at normal gas pressures by may become significant at 
very low gas pressures. However, the term is always positive, as we would expect on 
physical grounds (there are more cold clusters growing from (i*- 1) to i* than hot 
clusters evaporating from (i*+ 1) to i*). Therefore it always leads to an increase in J 
above the value given by (4.11). In other words, (4.11) represents the greatest possible 
reduction in flux from its isothermal value within the approximation taken in assuming 
C:" is given by (4.3). Numerical solution of (4.4) and (4.7) by integrating the time 
dependent equations to steady state confirm that the flux is slightly greater than that 
given by (4.11 j. 

4.2. Numerical solution 

To solve (4.1) numerically with gain and loss rates given by our liquid drop model in 
section 3, we assume that C $ ( E )  can he expressed as a polynomial in energy multiplied 
by the equilibrium distribution, that is 

(4.12) 

where x = ( E  - U;)/kT. We assume that clusters of size i < i,;. are in equilibrium and 
that clusters larger than i,,, are removed from the system. We therefore have ( m  + 1) x 
( imaX-im;") unknowns py) which can be found by substituting (4.12) in the ( i m s x -  imjn) 
equations (4.1) (for imin<iS  Lax), multiplying each equation by x", for n =  
0, 1 ,2 , .  . . , m, and integrating over x The resulting linear equations can be solved by 
standard methods and the flux can then be found using (4.2). More details of the 
solution method appear in the appendix. 

We have performed calculations with parameters characteristic of n-nonane in 
argonat0"C ( ~ ~ = 3 k , c , ~ = 1 . 5 k , a = 2 0 . l k T , b = 1 4 . 0 k T )  and ofwaterinairat  20°C 
(c.,,=3k, ~ , , ~ = 2 . 5 k ,  a = 18.lkT, b = 8.4kT). Although we refer to these systems as n- 
nonane/argon and water/air below, it should be noted that our model is too crude to 
reproduce all experimentally measured characteristics of these systems. In particular 
it predicts the equilibrium vapour pressure incorrectly so our predictions of absolute 
values of nucleation rates as a function of vapour pressure are likely to be in error. 

' 
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However, here we present ratios of nucleation rates at given saturations, which are 
insensitive to the absolute values of the vapour pressure and I. These ratios are also 
insensitive to the value of 6. 

In the limit of high gas pressure, collisional energy transfers dominate and the 
energy distributions are close to thermal equilibrium characterized by the gas tem- 
perature T. The j= 0 term then dominates in the expression for the C:" in (4.12). The 
system may therefore be considered to be isothermal, which is assumed in most 
developments of nucleation theory, with the result that no gas pressure dependence 
appears. For finite gas pressures, however, the steady-state cluster energy distributions 
deviate from thermal equilibrium and a pressure dependence of the nucleation rate 
emerges. Figures 4 and 5 illustrate the effect for n-nonane nucleation in argon, and 
water nucleation in air, for particular conditions, over a range of system pressures. 

I C Barrett et al 

n-nonane/argon 
S=lO 

T 4  K 
+k 
%.=3k/Z 

' - 2  . 

0 '10 20 30 40 50 60 70 80 90 100 

ratio of gas pressure to vapour pressure p,/Sp.. 
Figure 4. Nucleation rate dependence on canier gar pressure, comparing our numerical 
r e d t s  to an analytical approximation. Jls0 is the pressure independent isothermal pre- 
diction. 

0.5 I 

0.0 r I , I , , , I , , , I , . , I , , , 
0 10 20 30 40 50 60 70 EO 90 . 
ratio of gas pressure to vapour pressure p&p, 

Figure 5. As for figure 4 but for water droplet nucleation in air. 

'0 



Energy fluctuations in homogeneous nucleation of aerosols 543 

The nucleation rate rises with pressure, saturating at the isothermal rate for large 
pressures. The numerical predictions of the ZD model, denoted JNvm are compared 
with the analytical approximation J,,,, equation (4.11), and also the formula of Feder 
et al [ 131. For our liquid drop model, kK’ = U - b( i*2’3 - (i* - l)2’3). The similarity of 
the predictions implies that it is a reasonable approximation to describe the cluster 
energy fluctuations using equilibrium distributions characterized by a size and pressure 
dependent temperature, the line of development pursued in subsection 4.1. However, 
note that numerical values are smaller than those given by (4.11), which gives the 
minimum possible flux in the approximation used in section 4.1. Hence the differences 
are due to the non-equilibrium energy distribution ratber than the approximations 
involved in deriving (4.11). 

In figure 6 this concept is illustrated by defining an effective cluster temperature T~ 
in the numerical calculations, related to the mean energy E; according to ic,,q = Ej - &. 
T; rises above the gas temperature T as the cluster size increases, corresponding to the 
heating effect of latent heat release. 

310 

305- temperature of growing droplet 

300- 
K 

p=3k 
0,,=3k/Z 

i.,.=ZO. L=200 

0 50 100 ~ 150 200 

cluster size i 
Figure 6. Mean cluster energy. parametrized as 7, during steady-state nucleation, compared 
with temperature of growing droplet, calculated from kinetic heat and mass transfer 
relatiom. 

For higher gas pressures, the rise in T~ is smaller. At ~ quite low values of i, 7; 
approaches a temperature characteristic of a growing physical droplet. This temperature 
is based on kinetic relations for heat and mass transfer to a droplet, .such that heat 
loss balances heat gained by condensation [21]. The implication is that the concept 
of a droplet with a well-defined temperature applies for clusters of molecules only a 
little larger than the critical size. 

5. Discussion and conclusions 

In this work we have studied the influence of the camer gas upon the energy distribution 
of nucleating clusters, which can alter.the rate of droplet formation. The motivation 
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is the strong pressure effect seen in some experiments, which seems to depend on the 
substances and conditions used. The problem requires a two-dimensional set of evol- 
ution equations for the cluster populations: transitions being allowed in cluster energy 
and cluster size. These include the gain and loss of vapour monomers by condensation 
and evaporation, and the gain and loss of energy by non-sticking gas and vapour 
molecule collisions with clusters, as well as latent heat transfers. In this study, detailed 
balance, together with a model of cluster interactions corresponding to the liquid drop 
concept, provide the rate coe5cients for transitions. The numerical solution of the 
equations for the steady-state situation with appropriate boundary conditions yields 
the nucleation rate. The effect of changes in the gas pressure can then be studied. 
Alternatively, approximate analytical results may be obtained by assuming cluster 
energy distributions which are in thermal equilibrium characterized by a cluster tem- 
perature ri. It is worth underlining here that clusters can only be discussed in terms 
of temperature if they assume equilibrium energy distributions. In general, a cluster 
energy description is necessary. A confusion between cluster energy and cluster tem- 
perature has appeared in the literature 113-161. This is one reason why previous 
treatments of this problem have been inadequate. 

The original analysis by Feder et al [ 131 used detailed balance in thermal equilibrium 
to obtain the rate coefficients, but assumed a Gaussian cluster energy distribution with 
mean and standard deviation based on continuum thermodynamics. Consequently, 
the cluster decay rate used depended, erroneously, on the temperature of the surround- 
ings. However, the resulting non-isothermal nucleation rate is similar to our approxi- 
mate analytic result, equation (4.11), with the implication that as long as detailed 
balance is invoked, the form assumed for the energy distribution is not vital. 

Ford and Clement [14,15] also used a Gaussian distribution similar to (2.3) to 
describe energy fluctuations. However, detailed balance in an equilibrium situation 
was not invoked to obtain the decay coefficients, but rather the Kelvin form, equation 
(3.19) was used, motivated by large droplet considerations. The decay rate correctly 
depended only on cluster properties and not on those of the environment. However, 
it has been shown here that this forin is only appropriate for large cluster sizes and 
that an exact expression for all cluster sizes can be derived, again dependent only on 
cluster properties, based on detailed balance and a cluster energy distribution which 
goes beyond the Gaussian approximation. Results based on these developments are 
similar to those of Feder er al and do not show the suppression effects proposed in 
1141. Clearly, these effects arise from the use of the inappropriate decay rate at small 
cluster size, coupled with the Gaussian distribution. The key to the new approach, and 
that of Feder et al, is the use of detailed balance in a reference thermal equilibrium 
situation. 

The pressure dependence arising from non-isothermal effects, however, does not 
explain the behaviour of nucleation rates reported experimentally. The fall in rate with 
an increase in pressure for n-nonane in argon using a diffusion chamber [7] is contrary 
to the effect described here. The rise in rate with pressure for dibutylphthalate (DBP) 
in CO1 in a Bow diffusion chamber [12] is stronger than would be predicted here, as 
is illustrated in figure 7. 

In conclusion, therefore, it has been shown that a simple cluster model can be used 
to study non-isothermal effects in homogeneous nucleation theory, avoiding the 
deficiencies of previous approaches. However, the resulting pressure dependence of 
the nucleation rate is weak and cannot explain the pressure effects seen in recent 
nucleation experiments. An explanation ofthese effects will probably require altemative 
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where ysiEw, h i = ( L L 1 -  U)/kT, x1 = EJkT and P ( x ' + x )  is the suitably non- 
dimensionalized form of (3.10). We introduce the approximation (4.12) for e?(~) ,  
divide through by izr3cP and perform the integrations over x1 to obtain 

J C Barrett et a1 

where 

are the binomial coefficients and we have used (from (2.4) and (2.7)) 

earLT i - 1  1-6 

-= C;Z1 S ~ d T ) v o  kT (ii1) '+1-6e-hrx-(T)  - S (A.3) 

the final form following from the vapour pressure for this model, pv..(T)= 
(kT/euo) e-a1kT, with the approximation (1 -l/i)'=e-'. Note that terms involving 
( x - h , )  in (A.2) are only present for x a  h,. To evaluate the terms in square brackets 
in (A.2) we use the detailed balance condition (3.9) to write 

(x )Eb.-' e -x,xiY+j- l  

~ S(X+X1 -x' - x2) - x j  
1 2  

X 
( X + X , ) Y + W  

We now multiply (A.2) by xn and integrate over x to obtain the following expressions 
for the coefficients of the pj: 

coefficient of p;"": M ( I  - m+ n+ 1, I - m + j +  1 )  
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coefficient of $+'): M ( I +  m+ n + 1, I +  m + j +  1 )  

coefficient of  pj'): M ( I + n + l ,  I + j + l )  

where I = (i - im&. Note that the ratios of gamma functions in these formulae can 
be generated recursively using r(z + 1 )  = zr(z). 

The equations can then be written in matrix form 

M p = d  (A.4) 
( i n , " + ] )  

,&"'+2) ,...,&a), . . . , PET-)) and the only non-zero elements of d are the first m 
which are minus the appropriate moments of the equilibrium distribution at size imi, 
(i.e. - M ( l - m ,  - m ) ,  -M(2-m,  -m),etc).AlthoughthedimensionofMmaybevery 
large, the matrix is banded (with bandwidth 4m-1)  and efficient subroutines are 
available for solving (A.4). Once the ps  are known, the flux can be found from (using 
(4.11) in (4.2)) 

where the column vector p is the transpose of (p$~+'),p$"j*+') ,..., Pm-, , 
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