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Abstracr In calculations of !he laser-induced ionizalion of uranium atoms it is necessary 
to average over all phases in the initial multicomponent wavefunction, the components 
corresponding to the initially occupied hyperfine states. In practice, however, it has teen found 
that the results of such a mixed state calculation differ only slightly from those obtained from 
a pure state calculation. which uses a single initial state with a random choice of phases. 
The statistical pmpenies of multidimensional unit vectors are used to explain this observation, 
suggesting that the system is sufficiently mmplicaled that the properties of the eigenvecton 
of the Hamiltonian are well represented by an ensemble over all possible orientations. This 
suppons the use of pure sfate calculations in laser isotope separation studies. which offer a large 
reduction in the necessary computational effon 

1. Introduction 

The separation of the isotopes of uranium has major commercial importance in the nuclear 
fuel industry. As is well known, naturally occurring uranium contains only 0.72% of 
the fissile 235U isotope, the remainder being mostly the non-fissile and neutron-absorbing 
isotope 23RU. The enrichment of the usU fraction is necessary for most current nuclear 
reactor designs, and represents a major component of the effort and cost of the production 
of nuclear fuel. 

Most enrichment is carried out with gas centrifuges or diffusion plants, exploiting the 
small difference in the masses of the two isotopes. Since this leads to very small differences 
in physical properties such as the diffusion rate, the process necessarily involves cascades 
of large numbers of devices in order to produce a significant enrichment. The capital cost 
of the plant involved is large, and more importantly, the energy needed to run the machines 
and produce a given enrichment is high. For this reason, altemative methods for separating 
the elements of uranium are being studied, notably the use of lasers to induce preferential 
ionization of 23sU (see Greenland 1991 for a review). 

Laser isotope separation relies on differences between the electronic energy levels of 
"% and 23*U. These differences are mainly due to the slightly larger nuclear radius for 
23RU, which means that the electrons see less of the nuclear potential and are consequently 
less strongly bound than in Both the binding energies and the energies of atomic 
transitions differ. The situation is complicated by the effect of nuclear spin, which leads 
to different hyperfine structum within ihe spectra of the two isotopes. The nuclear spin of 
='U is $, so that each transition in the spechum is split into an octet. The nuclear spin 
of 23RU is zero, however, so the transitions are singlets. In spite of the spreading of the 235U 
specmm due to the hyperfine structure, though, the nuclear radius effect is strong enough 
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to separate the transitions in "5U from those in ''*U. This is exploited using a laser with a 
bandwidth smaller than the frequency separation of the spec- tuned to excite transitions in 
235U but not in 23RU. A very effective separation of the isotopes is then possible by ionizing 
and collecting the ='U ions elect"agnetically. 

isotope in a single 
step, but instead a multiphoton process is envisaged, involving a ladder of atomic transitions. 
These can be arranged linearly, or in more complicated arrangements, depending on the 
situation. Possible ladders are illustrated in figure 1. The laser frequencies chosen, and 
therefore the route taken by the ladder through the very complicated uranium spectrum 
(Ahmad and Pandey 1980). is a matter of great importance. This is because the ionization 
depends on the various transition strengths involved. Also, loss of population from the 
ladder by spontaneous decay to other levels should be minimized. In order to optimize the 
choice of ladder, a theoretical description of the ionization process can be very useful. The 
problem can be described by a Schr&dinger equation for the evolution of a wavefunction 
in a space spanned by the N coupled atomic states. The calculation requires a set of 
atomic parameters, such as decay rates, coupling strengths to the laser field, and hyperfine 
splittings, together with a set of laser parameters, including frequencies, intensities, pulse 
shapes, phases and delays. The calculation of ionization yield can then be performed by 
simply evolving the atomic system from an initial state through the excitation process. 

With lasers currently available, it is not possible to ionize the 

Figure 1. ladder schemes For the excitation of uranium. A multiphoton process is envisaged, 
involving the Sequenlid excitation of an elecmn from one (a) or more (b) initid states through 
several levels to an autoionizing top level. 

Although conceptually straightforward, the calculation is extremely complex, since the 
interactions are time dependent and a large number of effects need to be taken into account, 
including Doppler broadening and Zeeman splitting. A further complication is the number 
of states involved the ground state of 235U has an orbital angular momentum J equal 
to 6, which together with the nuclear spin I of leads to a multiplicity of the ground 
state atomic level of (2J + 1)(21+ 1)=104. For a typical ladder consisting of three laser 
frequencies, coupling four atomic levels, this implies the coupling of over 400 states, though 
selection rules reduce this estimate to some extent. Numerical evolution of the quantum 
mechanical state according to the details of the laser interactions then becomes very time 
consuming and costly. It is therefore sensible to look for ways in which the complexity of 
the calculation can be reduced, while still retaining a sufficiently realistic description of the 
ionization process. A scheme for doing so is examined in this paper. 
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An exact quantum mechanical calculation of the excitation process involves taking 
an average over all possible initial states, which is known as a mixed state calculation. 
However, we have noticed that in our uranium ionization case a pure state calculation, 
which is an evolution from a particular initial state, gives results which differ only slightly 
from exact computations. This can greatly reduce the scale of the problem. However, the 
saving can only be exploited with confidence if the reason for the similarity is understood 
This paper attempts to define the circumstances which lead to similarities in the pure and 
mixed state calculations. 

An analysis of pure and mixed state calculations for the excitation of uranium is made 
in the next section, using statistical properties of eigenvectors to estimate the different 
ionization yields. Section 3 gives an illustration of the possible computational savings and 
a summary of the work and conclusions are given in section 4. An appendix describes the 
statistics of multidimensional unit vectors. 

2. Pure and mixed state calculations 

Quantum mechanical calculations starting from either a pure or a mixed initial state are 
most easily compared for a simplified case. We consider a situation where the laser fields 
are switched on at time t = 0 and operate at constant frequency and amplitude for an 
interval T. We neglect transitions to states outside the ladder of atomic levels considered. 
The corresponding Hamiltonian in a suitable set of basis states and using the rotating 
wave approximation, is real and time independent, and describes all atomic and atom-laser 
interactions. The effects of going beyond these assumptions are examined later. 

Consider a set of N states coupled by a Hamiltonian H. The system is described by a 
normalized N-component wavefunction $ , ( I  = 1, N). The evolution from an initial state 
denoted $' is written 

where U is the evolution operator, given by 

U = exp(-iHr). (2) 

If H is time independent, then the matrix elements of U are given by 

where X i  is the ith eigenvalue and U:. is the jth component of the ith eigenvector of H. 
The N eigenvectors form an orthogonal set of real unit vectors in N-dimensional space. 
The population at time t in the state j is then given by 

We shall be interested in the mean population found in a specified subset of states ( $ j )  

over the interaction period T. These represent the states from which ionization would occur, 
although no losses are yet allowed for in the Hamiltonian. In the limit of very small decay 
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rates, the time-integrated population in the j states divided by the lifetime r would yield 
the fractional ionization. The mean population in the j states is 

The eigenvalues Ai represent oscillation frequencies of population transfer amongst the 
states. It is assumed that no two states are exactly degenerate. If many such oscillations 
take place during the excitation interval, i.e. (Ai - Ai)T >> 1, then the second sum 
in equation (6) can be neglected. (In practice, T is of the order of tens of ns, and the 
difference in frequencies a few hundreds of MHz, so that this approximation is reasonable.) 
The resulting averaged excited population is time independent, within the approximation 
taken, which suggests that an approach using time-independent perturbation theory might 
have yielded the same result 

Consider a calculation stating from a situation where population is divided between a 
subset {+k ]  of the states. These would correspond to the initially occupied states of the 
atom. We shall insist that the j states and the k states are separate subsets of the N coupled 
states. Let the initial wavefunction be 

@: = aw exp(iak) (7) 

where the [all  are a suitably normalized set of amplitudes and the { f f k j  are a set of phases. 
From equation (6), we have to a good approximation, 

which defines the pure state mean excited population I , .  
The specified initial population in each of the k states defines the amplitudes ak but the 

phases are undetermined. The mixed state calculation performs an average over all possible 
phase relationships in the initial state. Thus from equation (8) the mixed state mean excited 
population I, is given by 

so that, defining an error E, 

These results can be applied to the case in question. Exact calculations of the ionization 
of a uranium atom require an average over the initial phases in the wavefunction, which 
is equivalent to performing separate evolutions of the system sming  with all the initial 



Laser-induced ionization of uranium 1573 

population in just one of the k states. Thus the effort required to p e r f m  a mixed state 
calculation is nominally N X  times that of a pure state calculation, where NX is the number 
of initially populated k states. 

Numerical codes have been written which calculate the ionization of uranium (Lauder 
and Greenland 1984) and which can use either pure or mixed state initial conditions. The 
pure initial state can have either a particular choice of phases, or a random set. In practice, 
it is found that the differences in computed ionization yields differ only slightly in all cases 
examined, while there is a large reduction in effort for the pure state calculation compared 
with the mixed state. The insensitivity may be partly ascribed to saturation of the ionization 
yield: for the laser parameters of interest commercially, each possible excitation route 
provides nearly complete ionization, which is therefore insensitive to the choice of initial 
conditions. However, even for low ionization rates, well away from optimum conditions, 
the differences are small. This suggests that the similarity in the results of the pure and 
mixed state calculations is in some way intrinsic to the system, and that a great saving can 
be made in calculating ionization yields, at the cost of introducing a small ermr relative to 
the exact calculation. The saving can only be exploited, however, if some estimate of the 
likely ermr can be made. 

The result given in equation (10) allows one to discuss the difference, E, between 
the pure and mixed state calculations in analytical terms. The expressions depend on the 
orthonormal set of real eigenvectors [ai] of H spanning the N-dimensional space. The 
orientation of the eigenvectors in the space depends on the details of the Hamiltonian. 
Recall that the system described so far is time independent, so the eigenvectors are fixed 
in this space. When time dependence is introduced, they will move as the Hamiltonian 
changes. The idea that we shall pursue in the remainder of this section is that a real system 
approximates to the average behaviour of an ensemble of randomly oriented eigenvectors 
in the N-dimensional space. It is likely that this situation is favoured by an increasing 
complexity of the system and an increasing dimension N .  This hypothesis will lead 
to numerical estimates of E which can be be compared against actual pure/mixed state 
calculational differences. 

Consider the mean properties of a set of random unit vectors in N dimensions, neglecting 
the orthogonality requirement. We are interested in the pure and mixed state mean excited 
populations ( I p )  and (I,,,} respectively, and the statistics of the error E, obtained by 
averaging within such an ensemble. We have 

where the subscript N denotes the dimensionality of the eigenvectors. In the appendix it is 
shown that for j # k, the moment in equation (11) is given by l / ( N ( N  + 2)) so that 

Similarly, (E} = 0 and 
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using a result given in the appendix. 
Equations (12) and (13) are the basic relations that we use to estimate the error 

introduced by a pure state calculation, but let us first write them in a form more suited 
to the calculations with uranium. At present, ionization calculations are required only for 
situations where mp. the z component of the total angular momentum F = I + J, is a 
constant of the motion. This leads to a separation of the excitation problem into a number 
of parallel ladders, labelled by p ,  involving a set of coupled hyperfine states with the same 
mF. The initial occupation amplitudes (ax) may be written as (uk/dk)i where vx is the 
fraction of the population initially in the atomic level to which the state k belongs, and dk 
is the (25 + 1)(21 + 1) multiplicity of that level. Then 

and 

where k, etc label the states within each excitation ladder. Equation (14) may be written 

where now the subscripts to U and d refer to the atomic level I. Nfp is the number of 
(final) j states in the excitation ladder labelled p and Nif, is the number of (initial) k states 
in atomic level I and ladder p .  Equation (15) can be similarly rewritten, at the same time 
performing a further averaging over the phases   CY^): 

where n and I label atomic levels. 

for which ui=l and y=O for I # 1. The ratio of expected error to the correct result is 
These expressions can be simplified in the case of one initially occupied atomic level, 

where we have dropped the I subscript on the Ni,. This is the expression we shall use to 
estimate the relative error introduced by the pure state calculation. 

Table I gives a set of multiplicities N; ,  and N f p  for ‘initial’ and ‘final’ states respectively 
in a set of ladders labelled by different mF for a system of four J = 6 atomic levels with 
I = f and linearly polarized lasers (Amp = 0). The states are coupled as in figure 
I(a). The total dimensionality N, of each coupled sub-system is also shown, together 
with the fractional error for each sub-system and for the whole problem, calculated using 
equation (18). The expected difference between the pure and mixed state calculations is 
of the order of 2% for this typical system, on the basis of the statistical properties of unit 
N-dimensional vectors. In the next section this estimate is compared with some example 
numerical calculations, in order to test the hypothesis that the average properties of the 
eigenvectors represent the behaviour of real systems. 
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Table 1. Properties of laddm of mnslant m~ for a four-level J = 6, I = system mgeiber 
with estimates of differences between pure and mixed state calculations. given by equation (18). 

mF Ntp Nip  N p  Error(%) 
-19R 1 1 4 0  
-17R 2 2 8 14.9 
-15R 3 3 12 12.7 
-13R 4 4 16 10.7 
-1IR 5 5 20 9.2 
-9R 6 6 24 8.0 
-7R 7 7 28 7.1 
-50. 8 8 32 6.4 
-3R 8 8 32 6.4 
-lR 8 8 32 6.4 

IR 8 8 32 6.4 
3R 8 8 32 6.4 
512 a 8 32 6.4 
in 7 7 28 7.1 
9/2 6 6 24 8.0 

11R 5 5 20 9.2 
13R 4 4 16 10.7 
15R 3 3 12 12.7 
17R 2 2 8 14.9 
19R 1 1 4 0  

Total 1.87 

Table 2. Pure and mixed state calculations of ionization yield for the system considered in table 
I .  The pure state resulls are obtained using random phases. 

Yieid 

Mixed state 0.3846 

Pure state 0.381 1 
0.4028 
0.3849 
0.3872 
0.3831 
0.3909 
0.3702 
0.3872 

Mean 0.3859 
Standard deviation 0.0092 

3. Numerical examples 

We consider a four-level ladder similar to scheme (a) shown in figure 1 J = 6  with for each 
level, and linearly polarized lasers, which separate the problem into 20 separately coupled 
sub-systems with constant m p ,  as described in table 1. Decay from all levels except the 
lowest, and time dependent interactions are included. The couplings, hypefine splittings, 
laser detunings, magnetic field and pulse shapes, etc, have been chosen to produce an 
ionization yield from the top level in the region of 40%. and do not need to be specified 
here. 

A mixed state calculation gives the exact ionization yield for the system. On the 
other hand, a number of pure state calculations, using phases [Q] chosen randomly from 
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a uniform distribution in 0 < LY~ < k, gives a scatter of results. From these, a mean 
and standard deviation can be calculated Results from this analysis are given in table 2. 
The difference between the mixed state yield and a pure state yield based on a randomly 
chosen set of phases is clearly small and of about the same size as the error derived in the 
previous section. In this particular case the differences are about 2.4%. The mixed state 
calculation took 102 CPU s on one processor of a Gay-2 supercomputer, however, while 
each pure state calculation took 42 CPU s. This is a gain of about 2.4 in computation time 
which represents a valuable reduction in effort. On scalar machines the acceleration has 
been found to be even greater. but the acceleration is not as large as the nominal factor of 
8 (the number of initially populated states) expected from earlier considerations. This is 
because the computations involve overheads which are independent of whether a pure or a 
mixed initial state is used, so that the gain will necessarily fall short of this maximum. 

4. Discussion and conclusions 

The task of calculating the ionization yield due to the multiphoton excitation of a complicated 
atom such as uranium is made much easier by using a pure state rather than a mixed state 
for the initial condition. The mixed state calculation is m m  precise since it performs 
an average over all possible phase differences between the components of the initial 
wavefunction. These components correspond to various hyperfine states in the initially 
populated atomic levels. A pure state calculation is based on a particular set of phases, and 
involves less computational effort since an averaging procedure is not necessary. In practice. 
we have found that the ionization yields resulting from pure and mixed state calculations 
are quite similar, becoming more so with more complicated systems and larger fractional 
ionizations. We have suggested that this similarity may be understood by considering the 
average properties of the eigenvectors of the Hamiltonian. This is equivalent to calculating 
the excitation of a system using all possible orientations of the eigenvectors, and taking 
averages. 

Using the statistical properties of multidimensional unit vectors, the expected e m r  
introduced by the pure state calculation has been estimated. This estimate gives the correct 
magnitudes of deviations between the two cases found in an example calculation. Although 
the ionization yields themselves are not accounted for numerically by the calculations based 
on the eigenvector ensemble, the relative magnitudes of the pure and mixed calculations 
are, which makes the approach useful. Pure state calculations can now be accompanied by 
an estimate of the probable deviation from the exact mixed state result. 

A number of details of the analysis need to be considered. In the development in 
section 2, The Hamiltonian was taken to be time independent and decay to states outside the 
ladder was neglected. These assumptions need not invalidate the development if population 
changes between levels occur on a faster timescale than either of these effects, which will 
almost always apply. Furthermore, population oscillations typically take place over periods 
much shorter than the pulse length, so the neglect of the i # 1 terms in equation (6) is 
justified. The assumption that there is no degeneracy within the set of eigenvalues will 
probably hold when considering a complicated system with many interactions. 

We conclude that the laser-induced ionization yield of 235U is insensitive to the choice 
of phases in the initial state, for conditions of interest in laser isotope separation, and that 
this can be exploited to reduce the effort necessary in performing calculations. The reason 
for the insensitivity is that the system is sufficiently complicated that the properties of the 
eigenvectors of the Hamiltonian can be represented by those of an ensemble. It would be of 



Laser-induced ionization of uranium 1577 

interest to study other systems in order to determine what particular features are important 
in bringing about this insensitivity. 
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Appendix 

We here describe the statistics of a unit vector in N dimensions. The probability distribution 
of the components ( x i )  of the vector is 

The delta function ensures that the vector has unit length and the probability distribution is 
correctly normalized The second moment of the ith component of the vector is 

since for any y. yS(y - 1) can be replaced by S(y - 1) withii an integral. The subscript N 
on the expectation value denotes the dimensionality of the vector. 

Also, for N > 4, 

2 
ni”=;’ dx;r2drdS2 x,? 6 (CL;;’x: + r2 - 1) 

l-$;3kir2drdS2 8 (CL;’xf + r2 - 1) 
b j  )N = 

2 2  

2 
( X i X j ) N - ?  

( X ;  ) N - 2  
i # j  - - 

where r’drdS2 is the volume element involved in the integration over the three components 
( X N - Z ,  XN-I, XN). with j 6 N - 3. Therefore 

1 
N(N + 2) (X:X:)N i # j ,  N > 2. 
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Now, the fourth moment of xi can be written 

N W  N ( N  + - 2 )  ”> 
= L ( L  N 

3 - - N ( N  + 2) 

using previous results. Higher moments can be calculated by similar means. In particular, 
we write, for N 2 4 

1 nk;;’ drir2drdS2 x,” 6 (C,“=;;’X: + r z  - 1) 

j” n,”=;;’ drjrzdrdS2 6 (xi”=;’ xf + r z  - 1) 
4 

@ j ) N  = 

S O  

4 2  3 
( X . X . ) N  = 

r J  N ( N + 2 ) ( N + 4 )  ’ 

The previous step can be repeated 

so that 

which is the highest moment required here. However, it is possible to continue the procedure 
to obtain all the moments. 
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