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Abstract. A combined adhesionioughness model of friction, originally developed 
for contact between a narrow slider and a single asperity, is applied to tne 
case of multiple asperity contact between rough sLrlaces. An analytical model, 
based on the Greenwood-Williamson model of asperity contact, leads to a 
s:mple roughness-dependent expression for the fr  ction coefticient. For elastic 
deformation at each contact point, the contribition die to roughness is half that 
siggested by the single asperity ana.ysis. When contact is largely plastic, the 
roughness contr bution is hall the e.astic contrib~tion. The reduction is mainly 
dde to cancellation when forces at the vanous asperjties in contact are summed. 
Example calcLlations are performed for rOJgh diamond surfaces. using numerically 
generated surfaces. 

1. Introduction 

The first attempt to relate friction to the roughness of 
a surface is associated with Coulomb [I]. Friction 
was taken to be the force required to move the point 
of contact between two surfaces up the incline of an 
asperity against the applied load. However, it was 
realized soon afterwards [2] that the energy expended 
in doing so was retumed during the descent down the 
other side of the asperity, so that the frictional force was 
on average zero. However, these ideas were developed 
later by Tabor who introduced an adhesive f r i c t i o ~ l  
force at the contact, which removed the symmetry 
between ascent and descent [3]. The energy required 
to ascend an asperity is then not all retumed during the 
descent, yielding a non-zero coefficient of friction, with 
a particular dependence on roughness. This mechanism 
was extended by Seal [4] to allow for sliding over a 
two-dimensional surface, 

However, in both Tabor's and Seal's analyses. 
contact between a narrow slider and the surface is 
considered, such that the slider encounters one asperity 
at a time. A more realistic contact situation between two 
rough surfaces should involve simultaneous interaction 
at many asperities. In this paper such a model is 
developed, and the results of the analysis compared with 
the single-asperity model. 

In the next section the single-asperity model is 
reviewed, and then an analytical development of multi- 
asperity contact is described, based on the Greenwood- 
Williamson model [5 ] .  In section 3 numerical 
calculations of friction between two rough diamond 

analytical model. Section 4 contains a discussion of the 
models and conclusions, together with some comments 
on the interpretation of experimental friction coefficients 
[6] for diamond films. 

2. The Tabor model 

2.1. One asperity 

The Tabor mechanism was developed originally [3] for 
the simple situation where a narrow slider passes over a 
single pointed asperity, as shown in figure 1. The local 
normal at the contact point is inclined at an angle -9 to the 
vertical, and the surface is taken to be one-dimensional. 
The angle B will be referred to as the contact angle. 
The local friction force 3 resisting motion from left 
to right in figure 1 is related to the local normal force 
W by F = p a w  where pa is the underlying friction 

N 

Figure 1. Situation considered by the Tabor model. A 
narrow slider moves over a pointed symmetrical asperity 
with anole of climb 0. Local reaction and friction contribute 

surfaces are presented, as a check on the results of the towardsoverall vertical and horizontal forces. 
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coefficient, due, it is assumed, to adhesion. The veltical 
and horizontal components of force acting on the slider 
are given by 

N = Wcos8-FsinB (1) 

and 
F = W sin 8 + Fcos8 

respectively, and the effective friction coefficient for the 
ascent of the asperity is therefore 

(2) 

(3) 

When the slider passes individually over many 
symmetric asperities, each with an angle of climb 8, the 
friction coefiicient fluctuates as the slider ascends and 
then descends. Its average value is, however, 

The roughness of a surface is determined by both 
the angle 8 and the surface correlation lengths: for 
constant values of the latter, roughness increases with 
increasing 8 [8 ] .  Equation (4) represents, therefore, a 
roughness-dependent friction coefficient. This model has 
recently been used to account for the observed roughness 
dependence of the friction coefficient of diamond films, 
where 8 for individual asperities can be as high as 70- 
80" [6]. 

The restriction to onedimensional surfaces has been 
removed by further development of the model 141. For 
two-dimensional surfaces, motion of the contact point 
around the shoulders of asperities has to be. taken into 
account. However, the friction coefficient retains a 
dependence on the angle of climb over the asperities, 
and hence on the roughness of the surface. 

2.2. Many asperities 

The analysis presented above applies to contact between 
a point slider moving over a single asperity or to 
contact between periodic corrugated surfaces with every 
point of contact identical. A more realistic situation 
involves two random two-dimensional rough surfaces 
which make contact at many asperities. We now present 
an analysis based on the Greenwood-Williamson model 
of rough surface contact [5 ] ,  which takes into account 
the inclination at each contact point. 

Figure 2 illustrates the situation considered in two 
equivalent ways: in ( U )  the real geometry of the 
contacting surfaces (represented in one dimension) is 
shown, and in (b) contact of the effective rough surface 
with a rigid flat surface. The effective rough surface is 
just the gap between the two surfaces, and the material 
properties are a combination of those of the two real 
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Figure 2. Contact between two one-dimensional rough 
surfaces. The real geometry in (a) can be treated using 
an effective rough surface in contact with a flat in (b). The 
real contact angle Oi alters the apparent indentation at the 
ith contact point in (b). Surfaces shown just touching. 

surfaces. This is a standard construction in contact 
mechanics [7]. 

However, it must be remembered that each contact 
shown in figure 2(b) is not in fact normal but is 
characterized by a non-zero inclination angle: this 
is taken into account in the following development. 
Figures 2(u) and (b) are merely topologically equivalent. 
J.t would perhaps be possible to develop the model 
using the contact of two rough surfaces as in figure 
2(u), but the rough-on-flat surface approach has been 
developed here because it corresponds more closely to 
the numerical work to be described in section 3. 

Consider the rigid flat to be. horizontal. The height of 
the ith asperity of the effective rough surface relative to 
its mean plane is zi. In the usual Greenwood-Williamson 
development, the indentation at the ith asperity in figure 
2(b) would normally be the interference (zi-d) between 
the rough surface and the rigid flat at height d above the 
mean plane. However, since the ith contact is inclined to 
the vertical at an angle e,, the actual indentation normal 
to the local tangent plane at asperity i is 

,si = (zi - d )  cosei. (5)  

This means that, for a given plane separation d in figure 
2(b), the real indentation at a contact decreases as the 
angle of contact increases. 

The contact angle 8 is the angle between the 
horizontal plane and the line of steepest ascent on the 
surface at the point of contact. The geometry at the 
contact is illustrated in figure 3. The direction of sliding 
is, in general, not along the line of steepest ascent, but 
rather at a resolved angle (Y to that direction, so that the 
real angle of ascent 8' is less than 8. Simple geometry 
yields tan8' = cosatan8. 

We now drop the suffix i and write the (normalized) 
distribution of heights z of asperities on the effective 
surface as $(z). Each contact is characterized by a 
contact angle 8, and for a chosen direction of sliding, an 
angle a, with distributions +(e) and <(a). respectively. 
It is assumed that 8 and a are not correlated with each 
other, nor with the asperity height. 
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and similarly for the total horizontal force 

F = Lmsfo(z - d) cos0 cos@’ +(z)$(Q)<(ar)  &de da. 

(11) 
These cancellations arise since for every contact with 

a given indentation and angle 8’ in a large ensemble of 
spherical asperities, there is likely,to be another with the 
opposite value of 8’. 

Equations (10) and (1  1) lead to an effective friction 
coefficient equal to 

Contacl 

reactmn 

Sliding _- - -  , Friction , 
lone ,, 

Figure 3. The geometry of contact on the flank of an 
asperity on a two-dimensional surface The maximum 
inclination angle at the point of contact is A,  and U is the 
angle between the direction of steepest slops and the 
direction of sliding. The actual angle of ascent during 
sliding is A‘. 

The area of contact at the ith asperity of the effective 
rough surface depends on the local indentation Si, and is 
Written 

Ai = f(&). (6) 

The local friction force at each asperity is Fi = Ais, 
where s is the shear stress required to break the adhesive 
bonds at the contact. The local normal reaction force is 

wi = g @ i )  (7) 

with f(8) and g(6) particular functions of indentation 
distance 6. 

The resolution of forces at each asperity is carried out 
in a manner analogous to equations (1) and (2) above, but 
extended to a two-dimensional surface. The total vertical 
force due to contact between the effective surface and 
the rigid flat is given by 

N = Lm{g ( ( 2  - d)cos@)cosO 

- s f ( ( z  -d)cosB)sinO’} 
x @ ( z ) $ ( @ ) C ( 4  dzde ch. (8) 

The horizontal force opposing the sliding from left to 
right is 

F = lm {g ((2 - d) cos@) sine cosa 

+sf ((2 - d )  COS e) cos@} 
x @(z)$r(@t(a)dzd@b. (9) 

The angular integrals are taken over the full available 
range, while the integrals over z are limited to the range 
with z d. 

For elastic indentation at each asperity, we can 
write f(6) = f06 and g(6) = gOS3/*, with fo and go 
independent of 6 [7]. Assuming for now that the surface 
is isotropic, so that the distribution of a is uniform with 
{(CY) = 1 / 2 7 .  so that 0‘ is distributed symmetrically 
about zero, we find that the contributions to N from the 
friction forces F at each asperity cancel, so that 

N = lm go(z - d)3/2  COS^/^@ 4(z)$(B)C(a) dz dB d a  

(10) 

where yo is. as before, the friction coefficient ignoring 
the inclination of contacts. Now, for small angles 0 and 
0’ we have 

cose’=i- ;cosZatanZe (13) 

so that the integral over a in equation (12) may be 
performed with t (a )  = l / h ,  giving 

j c o s e ( i  - :tan2@) $@)de . (14) j ~ 0 ~ 5 1 2  e $(e) fi = PO 

By expanding the integrands the friction coefficient 
for elastic indentation may therefore be written 

LL = w0(i+  $(e2)) (15) 

for small angles 0,  where the angled brackets denote the 
mean value over the distribution $(e). 

This result is less dependent on roughness than 
expected from the one-asperity analysis. The Tabor 
analysis can only be applied to the present case by 
allowing a narrow slider to pass over the rough surface, 
always taking the steepest path up and down the 
asperities. The apparent friction coefficient fluctuates 
as the slider moves, but an average can be calculated. 
From equation (4), the friction coefficient in these 
circumstances would be fio(1 + (0’)) for small angles 
and small wo. 

The 6’ dependence is less when the surface is taken to 
respond plastically to the indentation. With f(6) = f 6 S  
and g(6) = gA6, where f; and gh are new coefficients 
describing plastic indentation 171, the expression for p 
equivalent to equation (14) is 

and so 
(17) 

for plastic deformation. 
These results have been derived using an extended 

Greenwood-Williamson model, which restricts asperity 
peaks to being spherical with constant curvature. An 
extension to more general surface properties is made in 
the next section using numerical contact simulation. 

I.L = p0(t -I- $e2)) 
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3. Numerical calculations 

The basis of the calculations made here is a numerical 
contact model developed by Ogilvy [SI. Modifications 
to the original code have been made to consider the 
contact of two random rough surfaces rather than a rough 
surface and a rigid flat, and to calculate the orientation 
of the local normal at each contact point. The code has 
also been changed to use the analysis of forces at each 
asperity described above and illustrated in figure 3. We 
do not allow asperities to move around each other as the 
surfaces slide. 

The simulation proceeds by generating two surfaces 
numerically with the required statistical properties [8]. 
The distribution of heights above a mean plane is 
Gaussian with a specified RMS roughness. Correlation 
lengths in the x and y directions in the two-dimensional 
plane characterize the rate a f  change of height along the 
surface. The effective rough surface is then brought into 
contact with a rigid flat, until the total reaction force 
balances the applied load. The apparent indentation 
at each contact is adjusted according to the inclination 
angle, noted from the original surface geometry, in the 
same fashion as described in equation (5). Several 
realizations of the surfaces are generated, each of which 
is used to determine a friction coeflicient, given by the 
total force in a specified horizontal direction divided by 
the total vertical force. 

In general, the friction coefficient for a realization 
will depend on the direction of sliding. Furthermore, it 
can be negative, if most contacts are descending and 
the inclination angles are large enough. In order to 
reduce the spread of results, each surface realization 
was analysed twice: once for sliding forwards and 
once for sliding backwards along a specified direction. 
This corresponds to incrementing the angle (Y at each 
contact by x ,  and repeating the analysis. The friction 
coefficients in each case were averaged and the mean 
and variance of this averaged quantity estimated from 
the ensemble. 

The same ensemble of realizations is used to study 
surfaces of different roughnesses, by simply scaling the 
heights. This introduces correlations in the mean friction 
coeflicients at each roughness, as we discuss below. 

Example calculations were performed for sliding 
between two surfaces generated with the same statistical 
properties. Material properties that are representative 
of diamond were used, though the applicability of the 
model to this system is debatable, since the model 
assumes that the underlying friction mechanism is 
adhesion between the surfaces at each contact, and 
ignores other mechanisms such as cracking. The 
mechanism of friction in diamond is discussed further 
in [3, 9, IO]. The material properties of diamond are 
reviewed in [ 111 and those chosen for use here are given 
in table 1. 

Diamond is usually considered to be an ideally brittle 
material and unable to deform plastically. However, 
it has been suggested that plastic flow does occur 
in diamond at Mom temperature, especially under 
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Table 1. Material properties representative of diamond for 
the numerical contact model. The data are reviewed in 
[ill. The yield stress given is actually the failure stress 
in tension. Possible alteration of the properties due to the 
thin film nature is ignored. 

Property Value Reference 

Young’s modulus 1050GPa [I41 

Surface shear strength 0.33 GPa [ll, 131 

Poisson’s ratio 0.2 11 41 
Meld strength 3 GPa [111 

indentation loading conditions [IZ], and that it plays 
a role in room-temperature friction of diamond on 
diamond [lo]. The yield stress given in table 1 is the 
tensile fracture stress measured in indentation tests 11 I ]  
but is used here for illustration. 

First, a purely elastic calculation was performed, 
by disabling the usual plastic deformation model in 
the code. Figure 4 shows how the friction coefficient 
depends on the roughness of the real surfaces calculated 
kom 75 realizations with area 36 pmz. The correlation 
lengths in the x and y directions on the surface were 
0.125 pm, chosen to produce appreciable inclination 
angles for the range of roughnesses considered. A 
typical asperity has a width of a few correlation lengths. 
The number of contact points falls from about 90 at the 
lowest roughness to about six at the highest. The friction 
coefficients tend to fall with increasing roughness, due 
to decreasing real contact area for a given load. This 
was noted in [SI. 

The curve in figure 4 represents results when one 
surface is taken to be perfectly flat, so that all inclination 
angles at the contacts are zero. These are denoted 
smooth slider results. The circles correspond to both 
surfaces being rough, and these are labelled rough slider 
results. The latter are plotted against a combined R M S  
roughness Re: 

RE = Ri i- RZ (18) 
where Rl ,z  are the RMS roughnesses of the two surfaces. 
Since R ,  = R ~ .  R, = A R ~ .  The mean friction 
coefficients for the rough slider exceed those for the 
smooth slider, with the difference increasing with 
roughness. The standard deviation in each friction 
coefficient is not shown: a typical statistical error is 
25% for the roughest surfaces and about 10% for the 
smoothest. In spite of these variations, the mean values 
lie along a reasonably smooth curve due to the use of 
scaled versions of each numerically generated surface 
to represent different roughnesses. For this reason, the 
enhancement factor due to the rough slider contact is 
visible in the numerical results in spite of statistical 
fluctuations of the same order of magnitude. 

The RMS contact angle (ez)1/2 at the asperities for the 
two rough surfaces is calculated numerically and is also 
shown in figure 4. This value is inserted into equation 
(15) to obtain a theoretical correction factor by which 
the rough slider and smooth slider results should differ, 
according to the previous analytical development. The 
crosses in figure 4 show the rough slider results reduced 
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Figure 5. Friction coefficient against effective roughness for contact between 
a rough surface and either a smooth slider (cLrve) or a rough slider (circles). 
This case takes into accomt both plastic and elastic deformation. 

by this factor. Although the comparison is affected 
a little by statistical fluctuations at high roughnesses, 
it is clear that the differences between rough and 
smooth slider friction coefficients are consistent with the 
predictions of the model. 

An elastoplastic calculation underlines the above 
conclusions. The same loading conditions were used 
as in the elastic calculation, but with the plastic model 
operating: the deformation of the asperities was then 
almost entirely plastic. Only 25 realizations were 
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n i x  . 

generated and analysed for this case. Figure 5 compares 
the mean friction coefficient against effective roughness 
for a rough slider (circles) and a smooth slider (curve). 
Errors in the mean friction coefficients are small in 
these calculations (about 2%) since, when deformation is 
largely plastic, the mean pressure at each asperity tends 
to a constant, as noted in IS]. This effect also reduces 
the dependence of p on the roughness, compared with 
the purely elastic case. Once again, the results for the 
rough slider lie above those for the smooth slider, for the 
same effective roughness. To test the validity of equation 
(17), the rough results are reduced by the expected 
enhancement factor, using values of (e2) generated from 
the simulation. These adjusted rough results are shown 
as crosses, and since they lie close to the smooth 
slider results we conclude that equation (17) provides a 
good description of the roughness effect for elastoplastic 
contact, for this range of contact angles. This is in spite 
of the fact that in the simulation the asperities are not 
spherical and possess a range of curvatures. 

The numerical code allows more complex cases to be 
considered, beyond the assumptions of the Greenwood- 
Williamson model. In particular, it is of interest 
to calculate the direction dependence of the friction 
coefficient, for non-isotropic surfaces. Figure 6 shows 
the friction coefficient against effective roughness for 
contact between surfaces both having a correlation length 
in the y direction twice that in the n direction, 0.250 
and 0.125 p m  respectively. The asperities are therefore 
typically elongated in the y direction. Two cases are 
shown, each based on 20 realizations, with relative 
motion of the surfaces along the x axis and the y 
axis, respectively. Unexpectedly, it is found that the 
friction coefficient in the y direction is greater than that 
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in the x direction, even though it is for the latter that 
values of 0'. the angle of ascent at the contacts, resolved 
in the sliding direction, are greater. The results can, 
however, be understood using equations (8) and (9), and 
a revised distribution of angles a. If sliding is in the 
direction of the long axis of the asperities, then a is 
not uniformly distributed, but instead values clustered 
around 327/2 are favoured. In this limit we have 0' CJ 0, 
and so for plastic indentation the development leads to 
p = po(l + f(0')). The roughness effect is twice that 
for an isotropic surface. In the opposite extreme, where 
motion is along the short axis of the asperities, a = 0 
or r and 0' = f0. so the model suggests p = po. 
independent of roughness, again for plastic deformation. 
The two situations studied numerically should provide 
friction coefficients somewhere between the isotropic 
prediction, shown as a curve in figure 6, and the two 
extreme cases just considered. This is indeed the case, 
as figure 6 indicates. The model predicts that similar 
effects would arise for elastic indentation. 

4. Discussion and conclusions 

This paper has developed the ideas suggested by Tabor 
[3] conceming the influence of surface roughness on 
friction. The original analysis treated the passage of a 
single contact point over an asperity on the opposing 
surface. More realistic friction problems, however, 
involve multi-asperity contact between rough surfaces, 
with a range of asperity curvatures, heights and, in 
particular, the angle of inclination 0 between the local 
normal at the contact point and the overall normal. 
We have extended the Greenwood-Williamson model of 
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friction coefficient for the elastic case to more reasonable 
values [SI, but this does not improve the roughness 
dependence. 

An assumption of plastic deformation at the 
asperities, however, produces friction coefficients of 
the correct order of magnitude with a qualitatively 
correct roughness dependence, as shown in figure 5. 
It is, however, questionable whether diamond surfaces 
are capable of significant plastic deformation. Further 
consideration of the data in [6] will require a clarification 
of the deformation and fracture response of diamond 
films under high loads. 

rough surface contact to take into account variations in@. 
The local reaction and friction forces at each contact are 
resolved in the sliding and overall normal directions, and 
related to the mean separation between the contacting 
planes. By summing the total forces, an effective friction 
coefficient can be obtained 

The effect of the contact angle distribution has been 
investigated analytically for pure elastic and pure plastic 
indentation. This approach leads to an effect less than 
that suggested by the Tabor analysis: the reason is that 
cancellation occurs when the total forces are calculated, 
since there are many asperity contacts instead of just 
one. Furthermore, the effect depends on the mode 
of deformation. For elastic contact, the additional 
contribution to the friction coefficient increases with 
roughness, but is about half that expected. For plastic 
contact, the contact angle effect is about one quarter of 
the Tabor result. 

These conclusions have been illustrated using a 
numerical simulation of elastic and elasto-plastic contact 
between rough diamond surfaces, based on a code 
due to Ogilvy [SI. The asperities are no longer 
taken to be spherical and of equal curvature, which is 
assumed in the Greenwood-Williamson model, but the 
results are consistent with the analytical predictions. A 
previous numerical study of the contact between rough 
surfaces allowing for non-zero inclination angles at the 
contacts showed similar agreement with the Greenwood- 
Williamson model, though no attempt was made to study 
friction [15]. 

The numerical code has been used to study the 
directional dependence of the friction coefficient for 
anisotropic surfaces, where the asperities tend to be 
elongated in a particular direction. It has been 
demonstrated that the friction coefficient is larger for 
sliding in the direction of asperity elongation than in 
the direction perpendicular to this. Such a conclusion 
is counter-intuitive, and it would be interesting to find 
experimental confirmation. 

Our main objective has been to demonstrate the 
effect of contact angle on the friction coefficient. 
However, the loading parameters for the numerical 
calculations have been chosen to be similar to those 
used experimentally by Hayward ef a1 [6] in a study 
of friction between diamond films. We have also used 
a correlation length of 0.125 pm in order to obtain 
large contact angles, approaching those described in 
161. Experimentally, friction coefficients increased with 
roughness from about 0.03 to 0.4 within the same 
range of roughnesses studied here [6] .  It would appear 
from figure 4 that the calculations assuming elastic 
deformation at the asperities show a steep decrease in 
friction coefficient with increasing roughness, which is 
not reversed by the roughness effect developed in this 
paper. Increasing the correlation length can increase the 
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