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Abstract
We consider the evaporation of material from a heated substrate into a
vacuum, and the problem of determining the density, flow velocity and
temperature of the vapour that streams off the surface. Treatments using the
Boltzmann equation suggest that the vapour flows at the speed of sound, and
with a temperature and density that depend on the substrate temperature. A
simpler approach is to parametrize the velocity distribution function of
vapour at the surface and then to use the conservation of mass, momentum
and energy fluxes to characterize the flow. However, the mean velocity of
the vapour is undetermined in this approach. We find, however, that by
calculating the flux of Boltzmann’s H function, we can exclude high mean
velocities, since they correspond to the unphysical destruction of entropy in
the evaporation process. Furthermore, it appears that the generation of
vapour travelling at approximately the speed of sound corresponds to the
maximum rate of entropy production. This lends support to this principle as
a useful method for characterizing systems far from equilibrium.

1. Introduction

The evaporation of solids or liquids is a phase transformation
brought about by the second law of thermodynamics: the
material turns into vapour in order to increase entropy.
However, thermodynamics alone cannot tell us how rapidly
the material vaporizes. This is a matter of kinetics, requiring
an understanding of the evolution of the velocity distribution
function for the vapour molecules as they emerge from the
surface (Cercignani 1988, Chapman and Cowling 1990).
The understanding of the processes of evaporation and
condensation has many practical applications, for example in
welding technology (where differential evaporation of alloy
components can affect material properties) (DeBroy et al
1991, 1995), surface sputtering (Kelly and Dreyfus 1988) and
electron beam evaporation of metals (Tenchov et al 1993).

We show here, using previous results from more detailed
calculations, that according to a simplified model of the
kinetics a material evaporates into a vacuum at a rate
corresponding to the production of entropy near its maximum
possible rate. This could be an example of a general
principle applicable to strongly irreversible processes. Such
a principle has been suggested before (Rebhan 1990, Robert
and Sommeria 1992), but a general proof is lacking, and the
status of the principle therefore relies on case studies such as
the one presented here.

2. Ansatz solution to Knudsen layer flow

The kinetics of evaporation was examined some decades ago
by Anisimov (1968), using an approximate treatment since
numerical solutions to the Boltzmann equation were not then
feasible. This approach, extended later by others (Ytrehus
1977, Knight 1979), was shown to give results consistent with
more detailed treatments (Anisimov and Rakhmatulina 1973,
Murakami and Oshima 1974, Cercignani 1980, Arthur and
Cercignani 1980, Cercignani 1981, Yen and Ytrehus 1981,
Finke et al 1990, Aden et al 1990, Sibold and Urbassek 1993).
An overview is given by Cercignani (2000). Such approximate
models have been applied to a range of situations, the simplest
of all being the case of evaporation of a heated material into a
vacuum.

Theoretical attention has focused on processes taking
place in the boundary layer a few mean free paths in thickness
immediately adjacent to the evaporating surface. Within this
so-called Knudsen layer, and for planar evaporating surfaces,
the molecular velocity distribution function f (x, v), where
x is the distance from the evaporating surface and v is the
velocity, relaxes from its non-equilibrium shape at the surface,
to a flowing Maxwellian equilibrium distribution. We can
represent the distribution function at x = L, far from the
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surface, in the form

f (x = L, v) = fL(v) = nL

(
m

2πkTL

)3/2

× exp

(
− m

2kTL

(
(vx − u)2 + v2

y + v2
z

))
(1)

where nL, TL and u are the molecular number density,
temperature and mean velocity in the x-direction at x = L,
respectively, and vx,y,z are the velocity components. The
molecular mass is m and k is the Boltzmann constant.

The velocity distribution function at the surface is assumed
to take a half-Maxwellian form for velocities away from the
surface:

f (x = 0, vx > 0) = f +
S (v) = nS

(
m

2πkTS

)3/2

× exp

(
− m

2kTS

(
v2
x + v2

y + v2
z

))
(2)

where nS is the equilibrium molecular number density
corresponding to the surface temperature TS. There is evidence
that such a form is more appropriate than, for example, a
Maxwellian distribution cut off at low energies (Kelly and
Dreyfus 1988, Zhakhovski and Anisimov 1997). According
to the Anisimov model, which we shall refer to as ansatz A,
the distribution at x = 0 for negative vx is

f (x = 0, vx < 0) = f −
S (v) = βfL(v) (3)

where β is a constant. This distribution is meant to represent
the back-propagating molecules arising from collisions at a
distance of about one mean free path away from the surface.
The distribution at the outer edge of the Knudsen layer, fL, is
used as an approximation to this intermediate distribution.

There are four unknown parameters in the above
distributions, namely nL, TL, u and β. Three relations between
them may be found by requiring conservation of the x-directed
fluxes of molecules, momentum and energy through the
Knudsen layer. These quantities, νn, νm and νe, respectively,
are given by integrals over the velocity distribution:

νn =
∫

d3v vxf (x, v) (4)

νm =
∫

d3v vxmvxf (x, v) (5)

νe =
∫

d3v vx
1
2mv2f (x, v) (6)

where v = |v|. These conservation conditions lead to the
following results for a monatomic vapour (Cercignani 1981,
DeBroy et al 1991):

TL
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=
([

1 +
πM2

64

]1/2

− π1/2M

8

)2

(7)
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(
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Figure 1. Distribution functions for molecular velocities normal to
an evaporating surface. An ansatz form valid at the surface (f ±

S )
relaxes to a flowing Maxwellian (fL) at a distance L from the
surface. The velocity distributions are made dimensionless by
dividing by nS (m/(2πkTS))

1/2, and the dimensionless velocity is
ηx = vx(m/2kTS)

1/2. Ansatzes A and B, based on equations (3) and
(17) (with α = 1) respectively, are considered.

where
M = (

mu2/(2kTL)
)1/2

and

erfc (M) = 2/(π1/2)

∫ ∞

M

exp
(−ξ 2

)
dξ.

Thus, the properties of the evaporating flow can be
characterized in terms of M , or equivalently by the Mach
number Ma = u/c where c is the speed of sound at the outer
edge of the Knudsen layer. Since c = (γ kTL/m)1/2, where
γ is the ratio of specific heats (equal to 5/3 for a monatomic
vapour), we have M = Ma (γ /2)1/2.

The downstream conditions above the surface determine
the value of Ma. A maximum Mach number of unity has
been proposed, based on numerical studies of the Boltzmann
equation (Finke et al 1990, Aden et al 1990, Sibold and
Urbassek 1993), and also a parametrized description of the
relaxation of the velocity distribution in the Knudsen layer,
representing f (x, v) as a combination of half-Maxwellians for
all x (Ytrehus 1977), together with other theoretical studies
(Murakami and Oshima 1974, Cercignani 1980, Arthur and
Cercignani 1980). A Mach number of unity is therefore
believed to apply to evaporation into a vacuum, but a physical
justification is lacking. It is this that we seek to provide here.

The distribution functions at the surface and in the
equilibrated flow are illustrated in figure 1, for Ma = 1
and γ = 5/3, and labelled ansatz A. The other distribution
functions shown, labelled as ansatz B, will be discussed later.
The ratios TL/TS and nL/nS are shown in figure 2, against the
Mach number. The cooling of vapour below the temperature of
the surface is clearly evident. Figure 3 shows the dimensionless
evaporation rate

J = 1

nS

(
m

2kTS

)1/2

νn. (10)
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Figure 2. Ratio of the temperature of the relaxed distribution TL to
the surface temperature TS against the Mach number of the
emerging flow, for ansatzes A and B. The molecular density of
evaporated material nL divided by nS, the equilibrium density at
temperature TS, is also shown.

3. Entropy flux

The analysis so far is well established, but we now consider a
fourth condition which constrains the allowed range of Mach
numbers for the flow. In contrast to the conservation conditions
in equations (4)–(6), it is an inequality based on the Boltzmann
H -theorem. Ytrehus (1977) gave some attention to this
theorem, and Arthur and Cercignani (1980) considered the rate
of dissipation, which is associated with entropy production.
Consider the quantity h = ∫

d3vf ln f and the associated flux

νh(x) =
∫

d3v vxf ln f. (11)

This flux will not be conserved. We can show this by
considering H(t) = ∫

hd3r, the time-dependent integral of
h over the spatial region between x = 0 and x = L. Taking
a time derivative and inserting the Boltzmann equation in the
form

∂f

∂t
+ v · ∇f = (∂f/∂t)c (12)

we get

dH

dt
=
∫

d3rd3v (ln f + 1)
∂f

∂t

= −
∫

d3rd3v ∇ · (vf ln f ) +
∫

d3rd3v (ln f + 1)

(
∂f

∂t

)
c

= −
∫

d3v dS · vf ln f +
∫

d3r!H (13)

with !H = ∫
(ln f + 1) (∂f/∂t)c d3v. For plane evaporation

from a source of surface area A, this gives

1

A

dH

dt
=
∫ L

0
!Hdx − (νh(L) − νh(0)) . (14)

Now, according to theH -theorem (Chapman and Cowling
1990), !H � 0, and so in a steady-state flow, for which
dH/dt = 0, the condition νh(L) � νh(0) must hold. Since
the entropy density in the vapour is proportional to −h, this

has the simple interpretation that the flux of entropy away from
the surface at x = L must be greater than the flux at x = 0,
due to the relaxation of the velocity distribution function that
takes place between these positions, and the consequent local
generation of entropy.

Note that further entropy will be generated due to the
evaporation of material from the condensed phase, at a rate,
per molecule, equal to (SV(nL, TL) − SC(nC, TS)) νn, where
SV and SC are the entropies per molecule in the vapour and
condensed phases, respectively, which are functions of the
prevailing temperatures and densities (nC is the atomic density
in the condensed phase). Note that this is closely related to the
evaporation rate J , and that it is always positive.

We are led to conclude that the rate of entropy production
due to vapour relaxation in the Knudsen layer (expressed in
dimensionless form by multiplying by suitable factors) is given
by

PS = (νh(0) − νh(L))
1

nS

(
m

2kTS

)1/2

. (15)

Now we consider the model forms this rate might take.
By employing ansatz A for the distribution at the surface,
as well as the Maxwellian expression valid for x = L

(equations (1)–(3)), we obtain

PS = 1

2π1/2

(
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)
− nL
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(
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(16)

×
(
β

[
exp(−M2)

π1/2
− 3M

4
erfc(M)

]
+ M

[
3

2
+ ln β

])
and the dependence of this function on the Mach number is
shown in figure 4.

If the model is to represent reality, then only positive
entropy production rates for the relaxation process are
acceptable. Negative rates of production mean that the ansatz
is not a sufficiently accurate representation of the true solution
to the Boltzmann equation, for which, of course, the entropy
production rate would be positive. The model based on ansatz
A clearly cannot be applied for Mach numbers of evaporative
flow greater than about 1.3. All Mach numbers less than this
are acceptable, and intriguingly, there is a maximum rate of
entropy production for a Mach number of around 0.8.

These features are likely to depend in detail on the form of
the ansatz used to parametrize the velocity distribution function
at the surface. To test this sensitivity, we have considered
another model, proposed originally by Ytrehus (1977), which
we call ansatz B. The velocity distribution function for negative
vx at the surface is now modelled by

f (x = 0, vx < 0) = f −
S (v) = β

(
αf +

S (v) + fL(v)
)

(17)

with α = 1. Clearly, by setting α = 0, we recover ansatz A,
and we could consider a continuum of model distribution
functions between these extremes. Ansatz B models the
distribution of velocities of molecules approaching the surface
as a combination of Maxwellians, one based on the equilibrated
distribution at x = L, and one on the properties of the local
vapour molecules moving away from the surface.

The equations resulting from the three flux conservation
conditions and theH -theorem cannot be solved in closed form,
and numerical solutions have to be obtained. We present the
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Figure 3. Dimensionless rate of evaporation J against the Mach
number of the emerging flow, for ansatzes A and B.

resulting velocity distributions for Ma = 1 in figure 1, for
comparison with the distributions according to ansatz A. The
distributions are clearly very different, at least for this Mach
number. The decreases in the temperature and density ratios
with Ma are illustrated in figure 2, again for comparison with
the earlier approach. The evaporation rate is given in figure 3,
and finally, the entropy production rate is shown in figure 4.

In spite of the differences in ansatz, the resulting properties
of the flow are similar. For ansatz B, large Mach numbers (this
time in excess of about 1.45) are excluded since they again
imply the destruction of entropy in the process of the relaxation,
which is inconsistent with irreversibility. For a range of small
Ma, entropy is also destroyed. And once again, there is a
Mach number for which the rate of entropy production is at a
maximum, this time in the region of Ma = 1.

We note that there is a peak in entropy production (due to
vapour relaxation) per emitted atom as well as per unit time.
This may be demonstrated by considering the quotient PS/J :
the entropy production rates in figure 4 modified according to
the evaporation rates in figure 3.

4. Discussion

We must now consider the results of detailed studies of the
process of evaporation into vacuum based on the Boltzmann
equation (Anisimov and Rakhmatulina 1973, Arthur and
Cercignani 1980, Finke et al 1990, Aden et al 1990) or
simulation techniques (Sibold and Urbassek 1993). All these
studies tend to suggest that the emerging vapour has a flow
velocity close to that of sound at the prevailing temperature.
Could it be that the physical reason for this is that the rate of
production of entropy (both overall and within the Knudsen
layer) is at a maximum for such a velocity? These detailed
numerical studies would need to be repeated and the fluxes
of entropy evaluated to be certain of this. But if these more
elaborate approaches bear any similarity to the approximate
treatments examined here, then we believe it is likely that the
entropy generation rate is at or close to a maximum.

A principle of maximum entropy production has been
proposed before in fluid dynamics to describe the approach
to equilibrium in a two-dimensional system (Robert and
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Figure 4. Dimensionless rate of entropy production PS against
Mach number, for ansatzes A and B.

Sommeria 1992). Correspondence between simplified
calculations based on this principle and more detailed
approaches have given some support to this principle, though
the principle does not appear to be satisfied exactly (Chavanis
and Sommeria 1997).

At least one other irreversible process has been found to
progress at a rate which maximizes the entropy production
rate. The characteristics of strong (high Mach number) shock
waves in hydrodynamics can be obtained using conservation
conditions for the fluxes of mass, momentum and energy
through the shock front. The entropy production rate can
then be evaluated. Rebhan (1990) considered this problem,
but took the step of ignoring one of the three conservation
conditions, instead studying the entropy production rate as
a function of the resulting undetermined parameter in the
problem. The maximum entropy production rate over a range
of this parameter was found. The interesting feature was
that as the shocks became stronger, this rate approached the
true entropy production rate obtained from the full solution
based on all three conservation conditions. The principle
of maximum rate of entropy production was acting as a
replacement for the neglected conservation condition.

In our case of strong evaporation into vacuum, we consider
an under-determined problem; that is, we do not know the
velocity distribution of molecules incident onto the surface
and we have to use an ansatz. In effect, we disregard the
Boltzmann equation and suitable boundary conditions far
from the surface (Sibold and Urbassek 1993), as a means
of obtaining this distribution, and hence characterizing the
flow. But we find that maximizing the entropy production rate
performs a similar task in determining the flow. This principle
might therefore be useful for simplifying the treatment of
other strongly irreversible processes. However, we must
take care, following Rebhan (1990), not to claim that this
principle is universal, since some irreversible processes close to
equilibrium (such as heat conduction in a rod) are characterized
by a minimum entropy production rate consistent with the
boundary conditions (Prigogine 1945, Jaynes 1989). If there
is a use for a principle of a maximum entropy production
rate, then it is perhaps for characterizing systems far from
equilibrium. A general analysis of the appropriate limits of
validity, however, is lacking at present.
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5. Conclusions

When a substance evaporates, it generates entropy. Part of
this entropy is produced during the process of relaxation
of the velocity distribution of the emergent vapour from
a non-equilibrium distribution at the surface, towards a
Maxwellian form in the relaxed flow. This takes place within
the Knudsen layer, a few mean free paths away from the
surface. A full description of this relaxation is possible
numerically, using an appropriate form of the Boltzmann
equation.

Instead, we have made use of simple parametrizations of
the velocity distributions, and have considered the dependence
of the rate of entropy production upon the mean velocity with
which the vapour flows away from the surface. It appears
that the rate of production, per unit time and per molecule, is
maximized for a mean flow velocity close to the speed of sound.
There is some uncertainty in the precise maximum, since the
parametrizations are only approximate and an exact treatment
is not the aim of this study. But there is a strong suggestion that
evaporation at the speed of sound has this special significance.
Since experiment and full solutions to the Boltzmann equation
for the problem support sonic velocities, we propose that this
is a reflection of a principle of maximum entropy production.
This principle has been suggested before (Rebhan 1990, Robert
and Sommeria 1992), though to our knowledge, no general
proof has been provided. An illustration of such a principle
through this study of the evaporation of materials is therefore
useful additional evidence in its favour.
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