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Abstract. Pure QCD is studied on a large Euclidean lattice consisting of 324 points at values 
of the coupling equal to 6.29, 6.585 and 6.88. Results are presented for the lowest- 
order spin-dependent corrections to the non-relativistic potential between a quark and an 
antiquark. Working within a Bethe-Salpeter formalism, it is concluded that the linear term 
in the non-relativistic potential is consistent with having arisen from scalar exchange: the 
Coulomb-like term similarly arises from a purely vector exchange. As part of the above 
study, calculations of the A I ,  hybrid potential in quarkoniuin are made, showing it to be 
similar in behaviour to the E ,  potential. 

1. Introduction 

A previous paper [l] presented some of the results of a recent Monte Carlo study 
of pure quantum chromodynamics (QCD). The aim of the study was to gain a more 
thorough understanding of the properties of pure QCD by defining the theory on the 
largest regular spacetime lattice yet constructed, consisting of 324 points with periodic 
boundary conditions. A lattice QCD calculation requires the specification of a coupling 
b, which is linked with the size of the lattice spacing a [ 2 ] .  The three values of p taken, 
6.29, 6.585 and 6.88, correspond, respectively, to a finer and finer four-dimensional 
spacetime grid. The investigation is extended here to the spin dependence of the 
quark-antiquark potential. The fine spacing of the lattices lend themselves to the study 
of the short-range structure of these interactions. 

An intuitive derivation of the spin-spin type potentials is given in $2. The details 
of the Monte Carlo calculations and the methods used to overcome the considerable 
computational difficulties appear in 93. Section 4 contains numerical results for the 
spin-spin and spin-orbit potentials describing the ground state of a heavy quark- 
antiquark system. This state is classified as A , ,  under the lattice symmetry group of 
the qij system (see [3] for a full discussion). Calculations are also presented for the 
non-relativistic potential in the qq system classified as A,u. This potential is important 
for calculating the masses of hybrid mesons [4]. The conclusions of the study are 
summarised in $5. 
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2. Spin-dependent corrections to the central potential in quarkonium 

The evaluation of expectation values of Wilson loops is the standard method on 
the lattice for finding the non-relativistic energy of a qtj pair. The non-relativistic 
corrections can be found by an expansion of the quark propagators in l /mq [ 5 ] ,  but 
here a more intuitive derivation is followed which emphasises the role of the relativistic 
terms in the qq Hamiltonian, and in lattice terms, the form of operator modelling the 
qq state. 

The correction to the non-relativistic potential energy for the qq state I I )  is given 
in second-order perturbation theory by 

where in) are eigenstates with energy E,, of the Euclidean non-relativistic Hamiltonian. 
H' is the perturbation, which for illustration is taken to be simply the chromomagnetic 
coupling to quark and antiquark spins 

H' = - B ( x ) . ( ~ ~ s ~ ( x  - rl) - p 2 a 3 ( x  - r2 ) )  (2) 

where r1  and v 2  are the positions of the q and tj respectively, pi is taken to be 
-gcri/(2mq), cr are the Pauli matrices, g is the charge and mq the mass of the fermion. 
B is the chromomagnetic field operator. With this H' equation (1) becomes 

having discarded two spin-independent pieces. Equation (3) can be written, for E,, > E,, 
as 

since (EIBIl) = 0. Note that spin-dependent corrections to hybrid states are not included 
in this formalism. The state l l )  can be represented as 

where A is a quarkonium operator acting at Euclidean time -o/2 creating a q and q 
at v1 and r2 together with a gluonic binding field. Hence, for large enough o 
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The vacuum expectation values can be interpreted easily when written as path 
integrals. The denominator of the integrand in (7) is a quarkonium operator correlation 
function over Euclidean time z. On the lattice the numerator can be written as 

where BL is a lattice representation of the chromomagnetic field operator, S is the 
lattice action, ZLAT is the lattice representation of the vacuum generating functional, 
y and v-) are the quark and antiquark fields respectively, and U, are the lattice link 
variables. If the operators A are taken to be products of links terminating on fermion 
operators then, after the integration over y and q, (8) becomes simply the expectation 
value of a Wilson loop containing insertions of chromomagnetic field components, as in 
figure 1. This corresponds with the results of [ 5 ] ,  but this approach shows the generality 
of the spatial parts of the loop (the structure of the operator A ) .  This is shown shaded 
in figure 1. The notation in (8) eliminates the (smeared) contour appearing in the 
expectation value; its inclusion is signified by the suffix C. The Pauli matrices in (8) 
appear as an expectation value in the spin part of the state created by A.  

Figure 1. Representation of an expectation value of a quarkonium operator correlation 
function including colour field operators, represented by crosses. The shaded areas represent 
smeared operators. 

The correction AE can be used to write down a spin-spin potential: 

where S ,  (S,) is the spin of the quark (antiquark), R = r 1  - Y,, R = IRJ, and the scalar 
and tensor spin-spin potentials are given, respectively, by 

and 

when R is taken to lie in the z direction. 
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Now, the spin-orbit contribution to the qij potential to O(l/mi) is 

where 

and V,(R) is the non-relativistic qij potential. Equations (9-14) are derived with greater 
rigour in [5], but the derivation for V,,4 above illustrates the conditions necessary for 
a successful lattice calculation. The crucial matter is whether (7) approximates well 
the expression in (5): how well does the operator A model the qS eigenstate? The 
evaluation of A E  is made most favourable, for given statistics, if the state created from 
10) by the operator A has high overlap onto the state I / ) ,  as is shown in the next section. 
The standard use of straight spatial parts in the contour [6, 71, neglects this matter: in 
contrast, the authors of [8] and [9] used optimised quarkonium operators constructed 
from a small number of lattice paths. The construction of optimised quarkonium 
operators for use on the 324 lattices is described in the next section. 

3. Calculational methods 

3.1. The lattices 

The constraints limiting a Monte Carlo lattice calculation are largely computational. 
It is worth discussing this briefly. A reduction of the lattice spacing by a half, whilst 
maintaining the lattice volume, corresponds to a sixteenfold increase in both the number 
of lattice points and the numerical processing required for one Monte Carlo sweep. 
The available computing resources were considerably stretched by the calculations 
using a 324 lattice with the high values of p listed earlier. The Cyber 205 computer 
at the University of Manchester Regional Computing Centre (UMRCC) provided 
the necessary processing speed to allow an exploratory study with limited statistics. 
Numerous techniques were used to exploit its capabilities. These are described at 
greater length in [11,12], where the details of the equilibrations are also given. A 
six-hit Metropolis algorithm was used together with the Wilson action. On the basis 
of a negligible correlation of the expectation value of the Polyakov line between 
configurations [13], seven configurations at /3 = 6.29 were selected as being independent: 
they all received a minimum of 1550 Monte Carlo sweeps and were separated by at least 
200. Similarly, there were eight configurations at p = 6.585, having had a minimum 
of 500 sweeps and separated by not less than 200, and six at p = 6.88 for which the 
minimum number of sweeps was 750 and the separation greater than 250. 
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The calculations reported here were mostly performed on the Cyber 205 at UM- 
RCC. Some additional calculations, using configurations of smaller lattices made 
available by Teper, were performed on the Cray X-MP/48 at the Rutherford Appleton 
Laboratory. To analyse the configurations efficiently, the lattice was processed in planes 
of 322 points which greatly reduced the amount of central computer memory used [14]. 
A typical analysis of a configuration, including the construction of lattices of blocked 
links (see below) used 2i 7 Mbytes of central memory and N 800 Mbytes of disc mem- 
ory. The calculations were performed using N 30 hours of CPU time on the Cyber 205: 
resources used in the initial generation of the configurations are reported in [12,13]. 

3.2. Composite links 

The normalised autocorrelation function of a lattice operator A at a separation nu 
(where U is the lattice spacing) can be written as 

where ii) is an eigenstate of the transfer matrix T with eigenvalue Ai. In the continuum 
limit T is related to the Hamiltonian H of the continuum theory (T  = exp(-uH)). The 
limit given in (15) is obtained for large enough n :  11) is the highest eigenvalue state with 
non-zero projection onto the state created out of the vacuum by A. The eigenvalues 
of T are therefore obtainable from the decay of normalised correlation functions, but 
preferably at as low a separation n as possible, since the Monte Carlo calculations are 
eventually swamped by statistical fluctuations at large n. The more the matrix element 
(IIAJO) dominates in the denominator of (15), the better. Where statistics are limited 
it is, therefore, crucial to use a sensible choice of operator A .  Since the number of 
324 configurations available is small, the construction of optimised operators has been 
strongly pursued. 

+U 
Figure 2. A representation of the basic blocking construction. The straight line segments 
on the right each represent a single spatial link from the previous level of iteration; p is a 
constant. The composite link on the left is shaded to indicate spatial blurring. 

As the continuum limit is approached the wavefunctions of the gluonic excitations 
will extend over a greater number of lattice spacings. To achieve an adequate overlap 
on to such a state it is necessary to use an operator A with a similar degree of 
spatial correlation. A number of schemes for ‘smeared’ operator construction have 
been studied [15,16]; here we use a method similar to ‘blocking’ (which has been used 
in studies of pure SU(2) and SU(3) gauge theories on smaller lattices [16]). We use a 
prescription for replacing the spatial links of a lattice configuration by composite links 
which have a greater physical extent, but possess the group transformation properties 
of the original link. The construction involves the lattice paths shown in figure 2, 
written as 
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where U,(n) is a link emanating in direction ,U from the point n of the lattice, p is 
a constant and U-,,(n) = U:(. - uQ).  The process can be iterated easily to construct 
composite links of rapidly increasing extent. 

To construct a composite link with the greatest spatial blurring the path contri- 
butions must be combined on approximately equal terms, so p should be of order 
unity and blocked and unblocked links should have a similar numerical magnitude. If 
this were not the case, the next iteration would not combine all five contributions in 
(16) equally. It is therefore necessary to introduce a normalisation into the blocking 
procedure. Several methods were considered in [14]: the projection of Wp onto the 
‘closest’ SU(3) matrix (scheme 1) was used for the p = 6.88 calculations, and Wp was 
divided by a factor (tr Wp W;)’’’ (scheme 2) for ,L? = 6.29 and 6.585. 

Smearing schemes of the type outlined above are used to produce composite links 
which are then combined together to make quarkonium operators. Following [17], 
the spatial parts of the quarkonium operators, A ,  were constructed from a basis of 
paths linking points separated by a distance R along a lattice axis. Here, the paths are 
constructed from blocked links. The two components in the basis were P,, the straight 
path between the q and ij; and P2, the sum of the four paths displaced one lattice 
spacing in each spatial direction perpendicular to z. These components are sketched in 
figure 3. The operator A ,  was represented as 

and the coefficient c ,  selected variationally. 

P ,  : 

P2 : I I +  

Figure 3. The components P1 and P2 forming the variational basis used to construct 
quarkonium operators (paths are constructed from composite links). 

The best smearing scheme maximised the overlaps of candidate operators onto the 
lattice qij states. It was found [14] that there was little sensitivity in the results to the 
value of p ,  all other features of the scheme remaining constant. A value of 0.5 was 
chosen for the calculations presented here and in [l]. Results were slightly more sensitive 
to choices of normalisation. Figure 4 shows the behaviour of the approximation to 
the eigenvalue ratio 2[/& inferred from the correlations (A~(n)A,(O)) / (A;f , (O)A,(O))  at 
n = T and T + 1, for p = 6.88. Clearly the limit in (15) is achieved for smaller n 
compared to an A ,  constructed from unblocked links [12]. Three blocking iterations 
at /3 = 6.88 gave the best results for R as large as loa. The best results at p = 6.29 and 
6.585 were obtained after two blocking iterations: this is in accordance with general 
expectations since these lattices are coarser than the p = 6.88 lattice. 

The overlaps of the operators A ,  which result from the lengthy construction 
programme outlined above are compared in table 1 with those for the operators S ,  
consisting of straight paths of unblocked links. This information defines the optimised 
quarkonium operators. Their autocorrelation at a separation of four lattice spacings is 
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Figure  4. Approximations to the highest ratio, I j / i ~ ,  derived from a comparison of q4 
operator correlations ( A ~ ( T ) A R ( O ) )  and (AL(T  + 1 ) A ~ ( 0 ) ) .  The behaviour of various 
models for A R  is shown as a function of T .  Open squares, no blocking; full circles, two 
blockings; open circles, three blockings. The optimised operators at each blocking level are 
compared: for no blocking, AR is a straight path of links termindting on fermions (from 
W1). 

sufficiently dominated by a single mode (see, for instance, figure 4), or at most by two, 
to allow the extraction of the non-relativistic potential [l]. 

4. Spin-dependent potentials on the lattice 

The main conclusions of previous studies of the spin-dependent potentials on the lattice 
[7,9] are that V,, V, and V4 are short-range potentials whilst VI is long range. One of 
the aims of the present study was to discover whether this same picture emerges from 
a lattice calculation deeper into the continuum limit. The finer spacing of the lattice 
points should make clearer the short-range structure of the potentials. This is especially 
important when considering the scalar spin-spin potential, which is proportional to a 
6 function in continuum perturbation theory. 

were evaluated using the 324 lattice configurations and the 
optimised quarkonium operators described in the previous section. The programs 
were also run on sequences of 164 configurations at p = 6.0 and 204 configurations 
at p = 6.2, generated according to a Metropolis algorithm with the Wilson action 

The potentials 
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Table 1. Values of the coefficients CR specifying the smeared operator A R  according to (17). 
The basis paths are constructed from composite links at the second blocking level for /I = 
6.29 and 6.585, and at the third level for p = 6.88. A comparison of the matrix elements 
of A R  and SR between the vacuum and the qij state at separation R along a lattice axis is 
also given, where SR is a straight path operator constructed from unblocked links. 

6.29 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.585 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
6.88 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 

3.0 
-2.4 
-2.1 
-2.1 
-2.2 
-2.4 
-2.5 
-2.8 
-3.1 
-3.4 

8.43 
-2.2 
-2.0 
-2.0 
-2.1 
-2.2 
-2.3 
-2.4 
-2.5 
-2.7 

4.9 
-0.49 
-0.46 
-0.45 
-0.45 
-0.46 
-0.47 
-0.48 
-0.49 
-0.51 

0.96 
0.89 0.61 
0.80 0.40 
0.73 0.25 
0.60 0.16 
0.52 0.10 
0.45 0.06 
0.38 0.04 
0.32 0.03 
0.26 0.01 

0.96 
0.91 0.63 
0.84 0.42 
0.76 0.27 
0.67 0.17 
0.60 0.11 
0.52 0.06 
0.43 0.04 
0.36 0.03 
0.30 0.02 
0.99 
0.97 0.64 
0.93 0.44 
0.90 0.30 
0.85 0.19 
0.81 0.13 
0.77 0.09 
0.72 0.05 
0.68 0.04 
0.64 0.03 

by Teper. 60 configurations, each separated by 25 sweeps, at p = 6.0 were analysed, 
and 12 at /l = 6.2 also separated by 25 sweeps. Optimised quarkonium operators for 
these additional lattices were required. A brief study was made of blocking levels and 
variational combinations of paths at p = 6.0 with the result that twice-blocked, scheme 
2 normalised spatial links were used. The combinations of P,  and P2 paths for various 
R were similar to those at = 6.29 shown in table 1. Since there seemed to be little p 
dependence between 6.0 and 6.29, this same prescription was chosen for p = 6.2. 

The lattice representations F b  of the chromoelectric and chromomagnetic fields are 

based upon the combination (1/2i)(Ppv (n)  -PPv(n)) t where PI,, is the plaquette operator: 

The division by the average plaquette is an attempt to cancel away O(a4) terms 
appearing in the numerator [9]. At the values of p studied here the naive lattice 
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potentials (calculated using only the numerator of the RHS of (18))  are increased due 
to this normalisation by factors of 2.59, 2.41 and 2.27 at = 6.29, 6.585 and 6.88 
respectively. The results presented here include these factors. The F h  (loosely referred 
to below as colour fields) are represented by the normalised combination of links 
shown in figure 5. The symmetric combinations should represent more accurately the 
colour field at the lattice position required, shown as a cross. The electric field operator 
involves time-directed links and it is taken to represent the electric field at the centre 
of a link. 

Figure 5. Lattice structures used to represent chromomagnetic (top) and chromoelectric 
(bottom) field operators. The combinations are considered to represent the field at the 
lattice position marked with a cross. 

4.1, Spin-spin potentials, and the A, ,  hybrid state 

We have evaluated the expectation values of loops with the plaquette-like operators 
shown in figure 5 inserted at points along the timelike sections; figure 6 is typical. The 
temporal length z was taken to be 5a, which from studies of the quarkonium operators 
[I]  is more than large enough for (7)  to be an accurate representation of (5) .  The 
integrals over t in (10,11,13,14) were approximated by sums. The advantages of small 
z (in terms of reduced computational effort and accuracy of evaluation) have to be 
balanced against the need to evaluate colour field correlations for as great a separation 
t as possible. An analysis with z = 6a found no dependence upon z in the resulting 
spin potentials, although the statistical errors were higher. The calculation with t = 5a 
limited the evaluation of chromomagnetic field correlations to those with separations 
t only as great as 3a. 

I I f 

Figure 6. Example loop used to evaluate the spin-spin potentials. The representation in 
figure 5 of BL is inserted twice into the generic structure in figure 1 to yield a sum of 
gauge invariant objects. R is the separation of the q and q, T is the temporal extent of the 
contour, and t is the temporal separation of the colour field insertions. 
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The time-directed links (except for those which are part of the chromoelectric field 
operators) were replaced in the calculation by multihit (MH) links [18,19], implemented 
following [19]. This procedure reduces the statistical fluctuation of the link (and of 
loops containing it) over a set of independent configurations. This reduced errors by 
about 20%, not as great an improvement as has been obtained for smaller p (e.g. [19]). 
This is to be expected since the physical volume of the lattice which contributes to the 
link averaging becomes smaller as p increases. 

The procedure for the completion of the integrals uses the exp(-AE’t) behaviour of 
the colour field correlations, where AE’ is the energy difference between the qq ground 
state and the lowest state excited from it by a colour field operator. For (Bk(t)Bb(0))C 
correlations, this is the E, hybrid (studied in [1,2]) and for the ( B ~ ( t ) B ~ ( O ) ) ,  it is the 
A I , ,  This can be determined from the symmetries of the states. It was possible to 
determine reasonably well the A , ,  energy from some of the (BIB:),  correlations, but 
otherwise the previously determined E, energies [l] were used (given in the appendix), 
and the A , ,  energies were estimated from the falloff in the ( B k B k ) ,  correlations 
between t = 2a and 3a. The integrals were then completed analytically. 

1.2 - 

1.0- 

5 0.8- 
B 

0.61 

i 0 
0 0.4 b 

Ht 
P 

T 

I e t  
0 .  

0 .  0 

Figure 7. Results for the Ai,, potential for qq separation R at various p (for key, see 
caption to figure 8) together with the A I ,  potential at p = 6.88, shown as full circles. The 
calculations have been rescaled according to an assumed asymptotic dependence of the 
lattice spacing a upon p to form a single plot. 

Finally we examined the dependence of the expectation value of the loops upon 
the absolute positions of the colour field insertions, rather than upon their relative 
positions. It was concluded that any such dependence in the data was small enough to 
be hidden within the statistical errors, and an average over absolute positions of the 
insertions was taken. 

In the general behaviour of the correlations there is a correspondence with per- 
turbative results based on one gluon exchange, as noted by [8]. In particular there 
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seems to be in some cases a change in sign of the (B:B:), correlations for large t .  
In contrast, the (BkBb) ,  correlations fall monotonically and for some values of R are 
remarkably close to a single exponential decay between t = a and 3a. This allows 
an estimation of the non-relativistic potential of the A, ,  hybrid state. The results are 
displayed on a single plot, figure 7, assuming asymptotic scaling. The f i  = 6.88 A, ,  
potential [l] is shown for comparison. The reasonable agreement between the results at 
different f i  suggests that an approximate form of asymptotic scaling is being obeyed by 
this lattice quantity. When compared to the E ,  potential [I] there is evidence that the 
A , ,  potential is lower, especially away from the origin. However, the way in which the 
A , ,  potential has been evaluated can lead to an underestimation, whereas the method 
used in [l] to calculate the E ,  potential is more likely to produce an overestimate. 

- 0.21 

Figure 8. Lattice results for the scalar (V,) and tensor (V3) spin-spin potentials in qq, given 
in dimensionless form. A single plot has been obtained by rescaling the lattice spacings at 
each /I, as in figure 7 .  Results at p = 6.0 were obtained from a 164 lattice, at p = 6.2 from a 
204 lattice and the remainder on 324 lattices. Open squares, = 6.0; inverted full triangle, 
p = 6.2; open triangle, /? = 6.29; full circle, p = 6.585; open circle, p = 6.88. 

The ( B k B f )  correlations were combined into the spin-spin potentials V, and V, 
according to (IO) and (11) and the extrapolation procedure given above. The results 
are listed in table 2 and the extrapolated potentials (after a rescaling of R according 
to asymptotic f i  dependence of a) are shown in figure 8. The rescaling of R only 
introduces a small inaccuracy in the abscissae of the plotted points. The use of 
dimensionless quantities as the ordinates eliminates any error in the vertical direction 
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- R -  

Figure 9. Examples of loops used to evaluate V I  (on the left) and V2 (on the right). The 
upper insertion arises from a chromoelectric field operator and the lower one arises from 
a chromomagnetic field operator. 

due to deviations from asymptotic scaling. It is possible to put physical units on the R 
axis by assuming that the lattice prediction for the string tension is equal to that used 
in continuum models of heavy quarkonia. We have a(/? = 6.585) Y 0.066 fm, and the 
points for f i  = 6.585 in the figure are at R = 2a,3a etc. After the calculation of the 
spin-orbit potentials has been described, these plots will be discussed further. 

Table 2. V3 and V4 potentials for various R and P. V,t corresponds to the truncated range 
of integration (it1 5 3a) in (10) and (11); Vle includes a contribution from an extrapolation 
of the integrals. V r r t  is the perturbative evaluation of the scalar spin-spin potential to 
order l / p .  The results are multiplied by lo4 and the errors are statistical. 

li R l a  .'Vi a3 V; -.'vi -a3v4e -,3v4Pert -a3(V4e - V r r t )  

6.0 

6.2 

6.29 

6.585 

6.88 

2 686(7) 
3 257(13) 
4 113(21) 
2 664(7) 
3 223 (1 6) 
4 77(19) 
5 46(21) 

2 650(4) 
3 232(5) 
4 107(7) 
5 50(9) 
6 44( 13) 

2 595(3) 
3 203(4) 
4 W 4 )  
5 47(5) 
2 543(3) 

4 75(4) 
5 44(4) 
6 30(5) 

3 183(3) 

68 7 ( 1 0) 
270(14) 
122(21) 
681(8) 
233(18) 
lOO(23) 
55(23) 

666(6) 
251(7) 
146(22) 
51(9) 
59(14) 

609(5) 
221(6) 
lOO(5) 

553(5) 

9 3 w  
49(5) 
33(5) 

76(12) 

201(7) 

441 (13) 
128(2 1) 
75(32) 

473(17) 
109(20) 
23(30) 

431(6) 
96@) 
23(11) 

416(4) 
lOO(6) 

18(7) 

390(4) 
90(6) 
21(7) 

398 (1 6) 
114(21) 
78(32) 

445(19) 
99(24) 
15(30) 

391 (12) 
70( 11) 
14(25) 

3 82 (1 0) 
7 9 m  
4(9) 

344(13) 
64(8) 

3UO) 

302 96(16) 
73 41(21) 
23 55(32) 

292 153( 19) 
71 28(24) 
26 -11(30) 

287 104( 12) 
70 O(11) 
22 -8(30) 

274 108 ( 10) 
67 12(8) 
21 -17(9) 

262 82(13) 
64 O(8) 
20 - 17 ( 10) 

4.2.  Spin-orbit potentials 

In this section the calculation of the spin-orbit potentials VI and V, is described. 
Using a temporal extent of z = 5a for loops such as figure 9, the correlations 
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( B $ ( 0 ) E ) ( t ) ) C / ( l ) C  were calculated for t = a /2 ,  3a/2 and 5a/2. The factors o f t  in the 
integrands in (13) and (14) make the extrapolation of the integration range to infinity 
more difficult than before. We assume exponential decay of the correlations according 
to exp(-AE't) for Itl)5a/2, where AE' is the difference between the non-relativistic 
energies of the E,  and the A , ,  states. 

Table 3. Derivatives of the VI and V2 spin-orbit potentials multiplied by lo4 for various B 
and R, together with statistical errors. VL't is the truncated result involving an integration 
range in (13) and (14) of -5u/2 I t I 5a/2, whilst Yte includes an inferred contribution 
from the rest of the integration range. 

B R l a  a2 v;' a2 V;" -a2 v;' -a2 v;' 

6.0 

6.2 

6.29 

6.585 

6.88 

2 459(9) 
3 147(15) 
4 33(26) 
2 416(9) 
3 153 (1 2) 
4 57(17) 
5 11 (32) 
2 395(4) 
3 146(6) 
4 60(8) 
5 18(11) 
6 
7 
8 
2 358(3) 
3 124(4) 
4 48(5) 
5 35(6) 
6 W 8 )  
7 
8 

2 328(3) 
3 108(3) 
4 41(4) 
5 16(6) 
6 12(7) 
7 
8 

651(40) 
240(26) 

68(30) 
525(21) 
209(16) 

96(20) 
13(32) 

522(30) 
2 14( 12) 
104(13) 

19(11) 

476(20) 
194(16) 
82(12) 
66(10) 
28(10) 

514(40) 
2 1 O(20) 

89(12) 
35(8) 
30(9) 

229(8) 
196( 15) 
146(22) 
176(6) 
169(12) 
161(20) 
135(27) 
149(3) 
132(5) 
113(7) 
127(10) 
116(15) 
125(23) 
1 ll(29) 

11 l(2) 
91(3) 
7 5 ( 3  
74(6) 
69(8) 
63(10) 
51(13) 

82(2) 
63(3) 
57(4) 
W 5 )  
56(9) 
42(7) 
44(8) 

306(20) 
281(25) 
223(28) 
21 8( 12) 
225(15) 
234(25) 
187(29) 
186 (1 2) 
171 (12) 
144(12) 
179( 14) 
175 (1 7) 
204(32) 
189(36) 

140(8) 
121(8) 
98(7) 
99(9) 
92(10) 
78(11) 
43(15) 

121(10) 
99(10) 
95(12) 
87(10) 

lOO(14) 
68P) 
69(10) 

The correlations were used to produce the derivatives of the V,  and V, potentials 
listed in table 3. The estimates 6'' come from the integrals in (13) and (14) truncated 
at t = 5a/2 and 6" includes an inferred contribution from the rest of the t interval. 
Clearly, the relative contributions from the extrapolation interval are quite important 
and to include the errors which might arise from the extrapolation procedure the 
quoted uncertainties in the results VG have been increased. 

The extrapolated values V;" (henceforth the label e is dropped) in table 3 are 
normalised by the string tension K calculated in [ l ]  and plotted in figure 10 against 
separation R rescaled according to asymptotic P-dependence of a. (The value of K 
for /3 = 6.0 is taken from [20] and for P = 6.2 from [21]). Clearly, V,  is a long- 
range potential, which supports the calculations reported in [7,9] but not those in [6]. 
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Figure 10. Lattice results for the derivative of the spin-orbit potential V I ,  normalised by 
the string tension K. Symbols as in figure 8. The separations R at each p have been 
rescaled according to the expected asymptotic behaviour. 

The results when normalised by the string tension are consistent with P-independence 
(general scaling). 

Figure 11. Lattice results for the derivative of the spin-orbit potential V2, given as the 
dimensionless V;R2. R rescaled as in figure 10 and symbols as in figure 8. 

Figure 11 gives the results for the derivative of V,. Again the extrapolated values 
in table 3 are taken, the dimensionless V;R2 is plotted, and R rescaled. It is important 
to check whether Gromes’ relation [22] is satisfied. This analytic result relating the two 
spin-orbit potentials and the non-relativistic potential Vo is 

vo = v2 - V I .  (19) 

For the results at P = 6.29, 6.585 and 6.88 (using the non-relativistic potential Vo 
calculated in [l]) the RHS of (19) is too small. This is likely to be due to the 
normalisation of the chromoelectric field operators used here. If the procedure in 
[9] is correct, then the normalisation used here will cause deviations from (19) which 
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are different for different R. Essentially, the procedure fails to remove self-energy 
contributions from the chromoelectric field operators in the environment of a Wilson 
loop [9]. The errors are the same in V{(R)  and P‘i(R) and so it should be possible to 
rescale the two so that (19) is satisfied. By necessity, the rescaling factor is different for 
different R and f l .  The rescaled values of Vi are plotted in figure 12. For large R Vi is 
very small and the rescaling simply puts -V[ /K equal to one (Vd N K for large R )  but 
the points in figure 12 are consistent with this value over a range of R below about 
0.4 fm, which is not large. The rescaled Vi  are shown in figure 13 and suggest a 1/R2 
behaviour. The significance of these results, and of those for the spin-spin potentials, 
is examined next. 

1.2  - 

k 
4 1.0 - 
- -  

0.8- 

Figure 12. As figure 10 but for rescaled V; 

0.3 

2 3 
R’o,,, 

0.2 

1 

Figure 13. As figure 11 but for rescaled V i .  

4 .3 .  Interpretation of the results 

The O(l/mi) corrections to the non-relativistic potential between q and ij are impor- 
tant not only for calculating the spectrum of quarkonia, but also for clarifying the 
fundamental nature of the qij interaction at hadronic length scales. The interaction at 
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such length scales can be represented in terms of forces due to the effective exchange 
of particles of various Lorentz characters and then Bethe-Salpeter methods used to 
deduce the qtj Hamiltonian in an expansion in ( l /mq)  [23]. Scalar and vector type 
interactions contribute to the mq-independent term, the non-relativistic potential V, 
and the relative contributions can be clarified by examining the O(l/mi) terms in the 
Hamiltonian. Neglecting any P , A  or T interaction, the potentials VOp4 can be written: 

V o = E + S  1 -  v; = E’ V, = e‘ /R - E” v, = 2V2E (20) v’ - -s’ 
where E is the vector and S the scalar contribution to Yo. The standard expression for 
V,, to which the calculations in [l] were fitted, is 

V, = ( A / R )  + K R  + C (21) 

with A,K and C listed in [l] for each p on the 32, lattice. Thus S and E can be 
represented by 

E ( R )  = (1 - q ) ( A / R )  + (1 - 7 ) K R  
S ( R )  = q(A /R)  + Y K R  

where q and 7 are constants. Hence 

- v; A 
- = - q y + y  K K R  

I 2  

3 
V 2 R  = -(1 - V ) A  + (1 - ~ ) K R ’  
V3R = -3(1 - q)A + (1 - ’ / ) K R 2  
V4R3 = 4(1 - y)KR2 - (1 - r7)4nAR3d3(R) 

At a separation R of two lattice spacings at p = 6.29 the value of - ( A / K R 2 )  is 
2.69. Therefore the values of - V / / K  in figure 12 imply that q is very small (5 0.01) 
and that 7 is close to one. This assignment is supported by figure 13 where the points 
agree very well with the choice q = 0 and 7 = 1. The calculated values of V3 in 
figure 8 are generally smaller than those to be expected from (23) but this is likely 
to be an inaccuracy in the plaquette normalisation of the colour field operators. We 
have evidence, therefore, that the qtj interaction divides neatly into a Coulomb-like 
vector interaction and a linear scalar part. We conclude firstly that the (scalar) Luscher 
contribution of -(n/12R) to the non-relativistic potential is absent in the range of R 
studied. The Coulomb-like part of V, appears to be purely vector in origin, so the 
correspondence between -(n/12) and the values of A in [l] seems to be a coincidence. 
The Luscher term may contribute to the potential at values of R larger than those 
studied here: indeed its derivation is specifically for large R. Secondly, we conclude that 
the calculations support the string picture of long-range chromoelectric fields confining 
the q and q, which has been shown to give a scalar linear potential [25]. 

Since the results for V;, Vi  and V, in figures 8,12 and 13 are generally consistent with 
universal curves regardless of p, approximate continuum results are being generated. 
The exception is the scalar spin-spin potential V, in figure 8 and table 2. The preferred 
dependence of the results upon R / a  rather than upon the rescaled R suggests that 
substantial perturbative lattice contributions (proportional to inverse powers of /3) are 
present. Lattice calculations are made in the hope that these lattice artifacts are not 
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large enough in the range of p studied to mask a component scaling asymptotically. If 
the expected continuum result is small, then there is likely to be a problem. Away from 
the origin V4 is expected to be close to zero, so we need to consider the perturbative 
lattice artifacts. These have been calculated to O(l/p) using the lattice perturbative 
methods outlined in [9]. The calculation is specific to the choice of colour field 
operators used in this study. The results are listed in table 2. The lattice estimates 
of V4 minus the O(l /p)  perturbative contributions are also given. Even taking into 
account the errors, it seems that for R > 2a the Monte Carlo results are consistent 
with the O( l /p)  perturbative artifacts. For R = 2a, the residue is likely to be due to 
perturbative artifacts in O(l /p2)  or above. There is no strong evidence in the lattice 
results that the V, potential differs from zero for the range of distances examined. 

5. Conclusions 

In this paper the spin-dependence to O( 1 /VI;) of the potential between a heavy quark 
and antiquark has been investigated on large lattices and in pure QCD using the non- 
perturbative formalism of [ 5 ] .  We have used complicated lattice operators as models 
for the heavy qij state. They were constructed according to intuitive ideas concerning 
the arrangement in space of the gluonic field in quarkonium, and prescriptions for 
their structure have been given. The operators were used previously [l] to calculate 
non-relativistic potentials for the A , ,  state of heavy quarkonium. 

The results on the 324 lattices confirm several features of the spin-dependent 
potentials. It now seems clear that the only potential whose behaviour, in the range 
of R studied, is not consistent with perturbation theory is the ‘same-side’ spin-orbit 
potential V I .  The results for the scalar spin-spin potential V4 are disappointing since 
its behaviour very close to the origin remains unresolved. 

It has been possible using the results obtained here and in [l], to demonstrate 
an important consistency between fits to the non-relativistic potential Vo and to the 
(rescaled) spin-orbit potentials. The standard separation of Vo into a Coulomb-like 
and a linear part seems to be more than a convenient parametrisation; the evidence is 
that each term has a distinct Lorentz character which is revealed in the spin-dependent 
corrections. Within the usual range of uncertainty inherent in a Monte Carlo study, the 
Coulomb-like term seems to be wholly vector in nature, whilst the linear term seems 
to be wholly scalar. The small values of the lattice spacings attainable on a 324 lattice, 
and hence the detail in the calculation, are instrumental in reaching this conclusion. 

The calculation of the A , ,  non-relativistic qij potential given here, it is believed, 
for the first time in any detail, indicates a behaviour similar to the E,  potential. This 
is surprising if the qCj state is viewed as a quantised string. The E ,  state in this picture 
would contain a single string phonon whilst the A , ,  would possess three and have a 
higher energy. 

The 324 lattices have imposed considerable computational difficulties which have 
been overcome through a careful allocation of the available resources. The manipulation 
of large configurations and the improvement of lattice operators have been given great 
attention. A remaining obstacle to the extension of lattice calculations further into 
the continuum limit is the phenomenon of critical slowing down. A solution to this 
problem is required before studies very much more ambitious than the one described 
here can be undertaken. 
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Figure 14. Differences AE' between the E ,  and A I ,  potentials in 44, for various separations 
which have been rescaled according to asymptotic behaviour. 
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Appendix 

For completeness, the calculated differences in energy between the E ,  hybrid and AI, 
ground states of qq for various separations can be extracted from the information given 
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in figure 14. The separations R are along axes of the 324 lattices at /3 = 6.29, 6.585 
and 6.88. The axes of the plot have been scaled according to an assumed two-loop 
asymptotic behaviour. The /3 = 6.88 E ,  potential was reported briefly in [l]. 
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