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Abstract. Using a Foldy-Wouthuysen transformation, the spin-orbit interaction is derived 
for a three-quark system confined by a realistic three-body flux-tube potential. The result 
is used together with harmonic oscillator wavefunctions to examine spin-orbit splittings in 
P-wave baryons. It is shown that the splittings are similar to those which arise from an 
approximate confining potential involving two-body potentials. 

1. Introduction 

The quark model with interactions suggested by quantum chromodynamics has 
achieved some remarkable successes in attempting to account for the mass spec- 
trum and decay characteristics of hadrons [l]. An important part of this effort has 
been the study of the spin-dependent splittings in the mass spectrum. A significant step 
forward [2 ]  was the consideration of a chromomagnetic hyperfine interaction term in 
the quark Hamiltonian, arising from single gluon exchange between pairs of quarks. 
The model provides spin-spin and tensor forces which have helped to explain the 
spectrum of a number of low-lying mesons and baryons [3]. What is more, the results 
are parametrised solely by the quark mass and the strong coupling constant. However, 
for hadronic states which contain quarks with orbital angular momentum, spin-orbit 
forces must be calculated, and this is where the simplest quark models fail. The one 
gluon exchange model implies a spin-orbit force for the baryon system which is about 
an order of magnitude too large, when the parameters are fixed by the spin-spin 
splittings [3, 41. 

A partial solution to this problem has long been recognised [3]. The confining 
potential between quarks is thought to be scalar in character. If so, then it provides a 
spin-orbit force, due to Thomas precession, which is opposite in sign to that due to 
one gluon exchange [ 5 ] .  There is support for this idea from non-perturbative studies 
of spin-orbit potentials in quarkonia [6, 71. This explanation for the small spin-orbit 
splittings has not met with success in baryons, however, where detailed calculation with 
trial confining potentials has shown that the cancellation applies in some, but not all, 
of the states [3]. 

A certain amount of progress has been made by adding complexity, through 
adjustable parameters, to the original quark potential model. A ‘relativised’ quark 
Hamiltonian [SI can successfully describe a large amount of spectroscopic and decay 
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data in both mesons and baryons. The spin-orbit effects can be reduced in size 
relative to the spin-spin contributions, essentially by smearing and adding momentum 
dependence to the potentials. 

Other approaches have been used which have aimed to reduce the spin-orbit forces 
relative to the spin-spin contributions. Amongst these there are considerations of pion 
exchange between quarks [9, lo], which introduces additional spin-spin and tensor 
splittings. Some models consider deformed potentials for the excited states [lo], and 
others take the view that non-local effects in the confining potential suppress the 
spin- orbit forces [ 1 11. 

This paper seeks to address a question which has been ignored even within the 
recent complicated models. The confining potential in baryons, according to flux-tube 
[12] ideas, is a three-body interaction [13], but up to now, has been treated as a sum of 
effective two-body potentials for the purposes of calculating the Thomas effect [3, 81. 
The treatment is reasonably well justified when considering the non-relativistic spectrum 
(where the relative error is less then 15% [13]) but for the Thomas term, derivatives 
of the non-relativistic potentials are required and it remains to be demonstrated that 
such an  approximation is adequate. This question is pursued here. 

The following section describes the three-quark flux-tube potential and gives a 
derivation of the associated Thomas term using a Foldy-Wouthuysen transformation 
[ 141 applied to a three-particle system. This generalises the two-particle case considered 
by Chraplyvy [15]. Section 3 contains calculations of the spin-orbit splittings in P-wave 
baryons due to the derived Thomas and one gluon exchange interactions. Harmonic 
oscillator wavefunctions with equal mass quarks are used. These results are compared 
with the two-body approximation and then our conclusions are given in $4. 

2. The three-body potential and Thomas term 

According to the flux-tube model, the confining mechanism in hadrons is the binding 
together of the quarks by gluonic flux constrained within narrow tubes. The tubes 
can only be broken by the creation of a quark-antiquark pair to terminate the newly 
formed ends. The rules of SU(3) symmetry dictate that each quark is the source of a 
flux-tube, but also that three tubes may intersect at  a point [16]. 

The energy of a flux-tube is proportional to its length. The confining potential 
in baryons may therefore be found by minimising the total interconnecting length of 
flux-tubes, according to the above rules, for a particular quark configuration. The 
gluonic energy is assumed to follow the motion of the quarks adiabatically, such that 
it is a function solely of their coordinates. The (scalar) confining potential for the 
three-quark system is then given by 
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Figure 1. Possible flux-tube arrangements In a three-quark system. 

for the flux-tube configurations of the types (i)-(iv) shown in figure 1. The quark 
coordinates are rl-3, rIl is the distance between quarks i and j ,  and r14 is the distance 
from quark i to the junction of the three flux-tubes in configuration (iv). K is the string 
tension. The flux-tubes entering the three-pronged junction in configuration (iv) are 
arranged at  120" to one another. In configurations (i)-(iii) the quark coordinates are 
such that the flux-tube junction lies at  one of the quark positions. 

The flux-tube potential will be referred to as V ( r l , r 2 , r 3 )  with the different forms 
understood. It is convenient to use the centre-of-mass coordinate R (for equal mass 
quarks) and the internal coordinates A and p defined by 

1 
R = - (  V I  + r2 + r3) 

a 2  - 2 r 3 )  " 1  
A = -(vi  + I  

V G  
1 

p = -(VI - r * ) .  Jz 
Figure 2 shows the meaning of the vectors 1 and p. The versions of V can be 

written [8, 131 

112 
V,,, = K [ ( j! + 4 p2 - &A . p)  + ( 5 ?.' + p2 + &a . p )  (8) 

where p = Ip1 and 2 = 111. The boundaries separating the various flux-tube configura- 
tions in ( i . ,p)  space can be found easily. VI is applicable for 
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where 1 is the angle between 1 and p .  Similarly, V,, applies for 

x > 27113 P 
2 sin(% - 27113) 

;. > 

and VI,, for 

P 1 / 2  

3 
L < - [5 - 2c0s2 x - 2(4 - 5 cos2 ci + cos4 x ) ” ~ ]  . 

Otherwise, V,, is the correct form of the potential. 

i 

Figure 2. Internal coordinates I and p 

It is convenient at this point to note the form of the two-body flux-tube potential 

(1 3) 

which has been used to approximate the above three-body potential. It is 

V2b = f K ( r , 2  + r13  + r23)  

which introduces an error characterised by the difference potential: 

V3b = - f K ( r 1 2  + r13 + r23) . (14) 

A value of f = was used in [13] and the effect of the term V,b upon the 
non-relativistic spectrum ignored (in addition, it seems that VI, was used for all quark 
configurations). In [8], the value o f f  was chosen to be equal to 0.5493 in order to 
minimise the expectation value of V3b within the harmonic oscillator representation of 
the ground state baryon. Vlb was used to derive spin-orbit forces due to the Thomas 
effect, whilst V,, appears to have been neglected in this connection. As stated in the 
introduction, it is the effect of this neglect which is examined here. 

Now we turn to the derivation of the Thomas term due to the potential V. A 
very useful tool for generating all of the relativistic corrections to a non-relativistic 
potential, in an expansion in powers of inverse mass, is the Foldy-Wouthuysen (FW) 
transformation. It is used here as an alternative to the methods based upon two-body 
scattering theory considered elsewhere [8]. Indeed, we use it expressly in order to 
consider three-body potentials. 

The FW transformation is a well known procedure for partially block-diagonalising 
a Hamiltonian acting on four component Dirac spinors. The result is a Hamiltonian 
acting on two component Pauli spinors, obtained as an expansion in inverse mass. The 
first term in this expansion is the non-relativistic Hamiltonian, and the higher terms 
the relativistic corrections, including spin dependent pieces. 

Complete block-diagonalisation is, however, only possible for the free-particle Dirac 
Hamiltonian : 
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where m is the quark mass, p its momentum, and x ,  and ,f? are the 4 x 4 Dirac matrices 
which satisfy the usual anticommutation relations 

and are represented by 

0 oi 1 0  
r : = ( o i  0) p = ( o  -1)  

using the Pauli matrices oi. It is easily shown that the transformed Hamiltonian 

with 

is block diagonalised as 

where p = /pi [17] . H’ is thus transformed into two 2 x 2 blocks describing the free 
quark and antiquark. The quark Hamiltonian is obtained by replacing ,f? by unity. 

In the presence of interactions, however, the FW transformation can, in general, 
only elevate the non-block-diagonal contributions to the Hamiltonian to higher order in 
(1 / m ) ,  These contributions are referred to as ‘odd’, and generically contain r matrices. 
The desired terms in the Hamiltonian are known as ‘even’ and are proportional to ,f? 
or the unit matrix. For example, consider the Hamiltonian 

H , = r . p + B m + U  (21) 

where U is a potential term. The odd term in order m0 can be removed in exchange 
for an odd term proportional to m-’ with the choice 

1 s = - p a . p  
, 2m 

giving 

Hf = eSH,ePS = HI + [S, HI] + [S, [S, H,]] + ... 
in which an odd term of order m0 in [S, H,] cancels that in HI : 

In exchange, there is the odd term 

B [ S ,  U ]  = - [I ‘ p ,  U ]  2m 
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plus a number of further terms in order m-l and above, both even and odd, coming 
from the [S, [S, H , ] ]  term. Further transformations using suitably chosen operators 
S can banish the odd terms to ever higher orders in (l,"), leaving the non-relativistic 
Hamiltonian plus relativistic corrections as even terms. The desired spin-dependent 
relativistic corrections may be obtained by careful identification of the even terms 
which arise out of each FW transformation. 

Now consider a quark-antiquark system with a scalar interaction alone between the 
quarks, In order to obtain the usual Thomas term due to a scalar confining potential 
V, in quarkonium [5] the relativistic Hamiltonian is written as 

H4q = a1 'PI + a2 'PZ + P1.l- P P  - P1P*Vc (26) 

where the labels 1 and 2 denote the quark and antiquark respectively. The Thomas 
term from the [S, [S,H,q]]  part of the transformed Hamiltonian, now with 

(27) 
1 

2 m S = -(/I I Q 1  'PI - P F Z  .PA 

is found, as required, to be 

-1 dV, 
- - s . L  
4m2r dr  

where r = Ivl - rZl, s is the total spin and L the total angular momentum. The 
non-relativistic form of the scalar potential is found by putting PI  = 1, P2 = -1 in (26). 
The P matrix structure in front of V, is important since its omission leads to a similar 
expression for the Thomas term, but with the opposite sign. It should be no  surprise to 
find that the relativistic Hamiltonian contains /3 matrix structures as part of the scalar 
potential term, by analogy with the mass terms. A Bethe-Salpeter approach starting 
with a scalar interaction kernel for the qij system generates just this /I-matrix structure 

This demonstration now leads to the Dirac matrix structure of a three-body 
relativistic scalar potential. The form for a baryon, which again can arise formally out 
of a Bethe-Salpeter treatment [l], is p1P2P3V where the 0 matrices now denote each 
of the three quarks, and V is the potential given in (6)-(9). The full Hamiltonian is 
now 

PI. 

The interaction term proportional to xs, the strong coupling constant, can be 
generated from a vector interaction kernel in the Bethe-Salpeter equation, derived in 
the ladder approximation (and in the instantaneous limit) from one gluon exchange 
graphs [l]. It is the starting point for a series of FW transformations which can generate 
the Breit-Fermi relativistic corrections. This procedure is described at some length for 
the analogous one photon exchange case in QED in [18]. 

The first FW transformation is performed using, [15] : 
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thus eliminating odd terms in order d. For a complete non-relativistic Hamiltonian 
plus corrections to order nz-2 it is necessary to perform two more transformations with 
more complicated expressions for S .  However, it is possible to recognise the order m-2 
spin-orbit terms due to V after only the first transformation. They are even terms 
contained in [S, [S, H , ] ] ,  using (23), (29) and (30). The Thomas term is 

which can be written as 

i= I 

1 
4m2 

= -~ CO,. (V,V x p , )  ( 3 3 )  

when [j, is replaced by unity, where V , V  is the derivative of V with respect to quark 
coordinate Y,. The quark coordinates and momenta can be replaced by 1, p and the 
conjugate momenta p r ,  p,, using (5). Using the centre-of-momentum frame: 

where I ,  k ,  n = 1,3 label the various vector components. 
The expression for H ,  is familiar from other derivations of the spin-orbit interaction 

in baryons, and initially, i t  might be considered that it could have been written down 
straight away. However, as far as the author is aware, previous derivations have relied 
upon V being a sum of two-body terms [3, 4, 81. The line of development carried 
through here was chosen since this assumption is not needed: I/ can be a three-body 
potential. Since we have this generality, the derivation has been described at some 
length, with a number of examples. 

Now it  only remains to evaluate the derivatives of V with respect to A and p .  These 
can be conveniently written as 

V,V = A p  + Bi, ( 3 5 )  

and 

V,V = B p  + C l  (36)  

with A ,  B and C given, with reference to figure 1 and (6)-(9), by 
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3K (1 + 1.*/5) -3 K (A . p )  
4, = 4, = 

2 [ $ ( p 2  + 1.’) + 351 ’ 2  25 [i ( p 2  + 1.*) + 351 

where 

and 

3. Quark oscillator wavefunctions 

The spin-orbit term in the three-quark Hamiltonian given by (34) is next examined 
using quark oscillator wavefunctions describing the P-wave non-strange baryons. These 
are 

48 : &(ad + bbS)  

, l o  : & ( a S a + b S b )  (39) 

28 : +(huh + bha + abb - aaa) 

in the notation given in [4]. The states are labelled by SU(3) multiplet and total quark 
spin multiplicity. The components are arranged in space function, SU(3) function, spin 
function order, and the labels refer to permutation symmetry. S is fully symmetric and 
a is symmetric (b  is antisymmetric) under labels 1, 2 interchange. The spatial functions 
are 

a : 2m [ ( m u ~ ~ / n ]  AY~,,,(o,) exp ( - i ” o ( p 2  + i2)) 
b : 2 J 2 / 3  [ ( m ~ ) ~ / n ]  pY,,,,(O,) exp ( - imw(p2  + 2’)) (40) 

where w is a parameter in the oscillator Hamiltonian H,, for which these are L = 1 
eigenfunctions : 
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The spin functions and SU(3) functions are standard: the quartet states are 

s =ttt etc (42) 

and the doublets 

for example. 
States of definite total angular momentum (e.g. 485/2) are constructed from the 

expressions in (39) using suitable Clebsch-Gordan coefficients. The matrix elements of 
H ,  can then be computed using (35)-(37). This is a rather lengthy task. The results 
are given below, incorporating the spin-orbit interactions due to one gluon exchange 
(i.e. for the total spin-orbit Hamiltonian Hso). 
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There are some interesting points to note in these results. Firstly, all the contribu- 
tions due to the three-quark flux-tube potential are given in terms of the single integral 
I .  In this expression, the quantities A ,  B and C take on different functional forms 
(listed in (37)) depending on the relative orientation of p and I, using the criteria (10)- 
(1 2). Equation (45) hides many difficulties involving complicated boundary conditions. 
Some of the integrations can be done analytically, however, leaving those over the 
quantities p ,  I and x ,  the angle between p and I .  The remaining integral can be done 
numerically by Monte Carlo selection over the integration space, weighted according 
to the exponential in the integrand. It is during this calculation that the complicated 
boundary conditions are taken into account, by simple conditional checks as to which 
values of A ,  E ,  and C are required for a particular selected point. The complexity of 
the boundary conditions probably precludes an  analytical calculation. The result of 
the computation is I = 0.542(6). 

The important comparison we wish to make is with the spin-orbit contributions 
due to the two-body scalar potential in (13). Taking into account the permutation 
symmetry of the wavefunctions, the effects can be represented by the choice, in the 
above formalism, of B = C = 0 and 

In this case, the full integral in (45) can be done analytically, giving I = f. As 
mentioned before, a value f = 0.5493 was taken in [8]. This was chosen in order 
to minimise the expectation value of the residual three body potential V3b within the 
ground state baryon wavefunction, but clearly the choice also turns out to provide 
quite an  accurate approximation to the spin-orbit splittings due to the three-quark 
potential V .  The Thomas term due to V3,, was ignored in [8] :  in fact our work shows 
that its effect within that scheme is negligible. 

I t  is worth briefly comparing the above result for the three-body potential with the 
general consideration of spin-orbit splittings due to a scalar potential given by Gromes 
[ I  11, which concludes that two quantities F and G parametrise the matrix elements. G 
is zero for two-body potentials: unfortunately it is zero also for V ,  since it is a local 
potential. The value of F can be easily found to be equal to - : ( ~ / 2 7 1 m ~ ) ' / ~ K I .  

4. Conclusions 

We have examined the spin-orbit interaction between the three quarks in a baryon, due 
to a realistic three-body potential based on the flux-tube model. This interaction, which 
is purely a Thomas precession effect since we take the flux-tube potential to be scalar 
in character, is found by using a Foldy-Wouthuysen transformation on the relativistic 
three-quark Hamiltonian. The procedure is a development of the two-particle case 
considered by Chraplyvy [15] and has the advantage that a three-body potential can 
be treated. The resulting spin-orbit potential is given in (34). 

Previously, the spin-orbit interaction in baryons was derived from a combination 
of two-quark potentials, (13), which were an  approximation to the more realistic three- 
body confining potential given in (6)-(9). This was done in order to simplify the 
derivation. As the spin-orbit interaction depends on derivatives of the non-relativistic 
potential (e.g. (28)), this approach seems at  first sight to be suspect. Since a comparison 
of the theoretical spin-orbit splittings in baryons with experiment still presents some 
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problems even in very sophisticated models such as [8], we have compared the two-body 
and three-body approaches using harmonic oscillator wavefunctions of the P-wave non- 
strange baryons. The results, together with the effects of vector gluon exchange, are 
summarised in (44). 

Similar patterns of relative splittings in the two cases emerge. The difference 
between the two- and three-body approaches lies in the value of an integral I ( (45)), 
which involves derivatives of the non-relativistic confining potential, as expected. For 
the three-body case, I = 0.542(6). For the two-body approach of [8], I = f where 
f is a constant appearing in the approximate two-body potential, (13). In order to 
obtain a good approximation to the non-relativistic baryon energies, f was chosen in 
[8] to be equal to 0.5493. This paper has shown that this choice also results in a good 
approximation to the spin-orbit contributions to the baryon masses. 

To conclude, i t  appears that a more careful consideration of the Thomas effect 
in a baryon system yields a result little different to the conclusions of previous, more 
approximate approaches. 

Acknowledgments 

The author would like to thank Professor R H Dalitz for his advice and encouragement. 

References 

Flamm D and Schoberl F 1982 lntroduciion to the Quark Model of Elementar), Particles, Vol I :  

De Rujula A, Georgi H and Glashow S L 1975 Phys. Rec. D 12 147 
Isgur N and Karl G 1978 Phys. Rec. D 18 4187 
Gromes D and Stamatescu I 1976 Nucl.  Phys.  B 112 213 
Gromes D 1977 Nucl .  Phys. B 131 80 
Huntley A and Michael C 1987 Nucl.  P h p  B 286 21 1 
Ford I J 1989 J .  Phys.  G: Nucl .  Phys.  15 1571 
Capstick S and Isgur N 1986 Pkys. Rer. D 34 2809 
Navarro J and Vento V 1985 ~Vuc l .  Phys. A 440 617 
Murthy M V N, Brack M, Bhaduri R K and Jennings B K 1985 Z. Phys. C 29 385 
Gromes D 1983 2. Phys.  C 18 249 
Isgur N and Paton J 1983 Phys. Lett. 124B 247; 1985 Phjs. Rec. D 31 2910 
Carlson J,  Kogut J and Pandharipande V R 1983 P h ~ s .  K e c .  D 27 233 
Foldy L L and Wouthuysen S A 1950 Phys.  Rec. D 78 29 
Chraplyvy Z V 1953 Phjs. Rev. D 91 388; 92 1310 
Dosch H G and Muller V 1976 Nucl. Phys. B 116 470 
Bjorken J D and Drell S D 1963 Relaticistic Quantuni I/lechunics (New York: McGraw-Hill) 
Stroscio M A 1975 Phys .  Rep. 22C 215 

Quantum Nuinbers, Gauge Theories and Hadron Spectroscopy (New York : Gordon and Breach) 


