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ABSTRACT
The possibility of magnesium oxide being the first species to nucleate in the cooling outflows

around M stars has been investigated. By treating the formation of the seed nuclei as a homoge-

neous nucleation problem and using molecular dynamics data obtained with the ‘compressible

ion potential’ for MgO, free energy calculations are performed to obtain an estimate of the

population densities of MgO clusters of various sizes. It is found that a free energy barrier of

at least hundreds of kB T would need to be climbed in order for MgO to nucleate in significant

amount in typical circumstellar shells, hence ruling out MgO as a realistic candidate for the

primary nucleating dust species. This is in agreement with a similar conclusion reached in

earlier studies, although the present calculations are based on a much more robust potential

model for MgO.
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1 I N T RO D U C T I O N

Dust particles play a crucial catalytic role in interstellar chemistry,

heterogeneous mantle growth and in the overall process of star

formation. The dust particles themselves, however, are very un-

likely to form in the ultralow density conditions of the interstellar

medium (ISM). Calculations based on stochastic chemical kinet-

ics have shown that the formation of molecules (Green et al. 2001;

Lushnikov, Bhatt & Ford 2003), or the nucleation of small molecular

clusters (Bhatt & Ford 2003), in interstellar conditions even with the

help of a catalyzing surface is far more difficult than earlier studies

based on classical chemical kinetics suggested. The painstakingly

long chain of reactions required to form a macroscopic dust grain

from an unstable phase may be so slow in the ISM that the cluster

would most likely disintegrate before it becomes a stable grain. For

clusters to grow to radii of 10−7 m under typical interstellar condi-

tions, the time-scale required would be in terms of billions of years

(Dyson & Williams 1997), that is, comparable to the age of the Uni-

verse, hence ruling out the ISM as a potential place of origin for

cosmic dust grains.

Instead, the process of dust formation is thought to take place well

before the material is expelled in the ISM, in the denser regions of

circumstellar shells around stars that have completed one full life-

cycle and are losing material rapidly due to thermal pulsation. The

relatively high temperatures around stars (∼103 K) also provide the

ideal condition for gaseous atoms to fall into the most-stable molec-

ular states before participating in dust formation. The possibility of
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stellar atmospheres as regions for nucleation of stardust was first

pointed out in 1962 by Hoyle & Wickramasinghe (1962).

Among the variety of objects whose environments are conducive

to dust formation, late-type giants and supergiants offer a unique

combination of advantages when concerned with the study of dust

formation. They are quite numerous in the sky and their mass-loss

rate is very high; estimates suggest (van Loon et al. 1999; Habing &

Olofsson 2003) that for very luminous red giants and supergiants, the

mass-loss rate can be as high as 10−4 M� yr−1, where M� denotes

the mass of the Sun. This is an enormously large value when one

notes that for the Sun, for example, the current mass-loss rate is only

about 2 × 10−14 M� yr−1. In total, late-type giants are thought to

eject more than 0.3 M� yr−1 of material into the ISM in our Galaxy

(Tielens, Waters & Bernatowicz 2005). Unlike nova outbursts, giants

and supergiants do not exhibit any strong source of ultraviolet (UV)

radiation; chromospheres in giants may exhibit weak UV radiation,

but it may be neglected in order to avoid additional complexity

in chemistry calculations. Also, since circumstellar shells around

late-type giants such as M stars are a significant source of infrared

and microwave emission, these objects are observationally quite

well studied. It is therefore sensible to study the problem of dust

formation around these objects.

Dust chemistry environments are generally classified into two

types: oxygen rich and carbon rich. While carbonaceous grain for-

mation has been studied with quite a lot of success and the associ-

ated chemical pathway is relatively well defined (Gail & Sedlmayr

1985, 1987, 1988), this is not the case for inorganic dust formation

around M stars (Cherchneff 2006). The overall chemical compo-

sition of dust in oxygen-rich clouds may be inferred through ob-

servations, but identifying the primary condensing material, which

generally lies hidden at the core of the dust particles, has proved to

be less than straightforward. Interpretation of spectral features of the
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interstellar grains with the help of laboratory experiments

(Begemann et al. 1995; Colangeli et al. 2003; Molster & Waters

2003; Whittet 2003) has brought about widespread acceptance that

the main constituents of dust around M stars are amorphous sili-

cates. However, it has been argued that they cannot be the material

directly nucleating from the gas phase, since the first few steps

of the formation of dimers, trimers, etc., are chemically untenable

(Gail & Sedlmayr 1987). It is also believed that the most-abundant

monomeric species that could facilitate the production of dust are

Fe, Mg, SiO and H2O. Among these, the SiO molecule has a high

bond energy (∼8.3 eV). One popular belief was that SiO crystals

nucleate first and then all these four species get involved in fur-

ther growth of the particle. This scenario was, however, questioned

on the grounds that the major condensation phase typically oc-

curs around late-type M stars within the temperature range of 800–

1200 K and the nucleation temperature required for SiO would be

600 K or less (Nuth & Donn 1982, 1983; Gail & Sedlmayr 1986,

1998).

Earlier, a possibility was discussed that iron–magnesium oxides

may be present in certain oxygen-rich shells (Henning et al. 1995).

MgO, often known as periclase, is among the species that possess

some of the highest dew points, which would enable it to nucle-

ate at high temperatures. Could it then be the primary nucleating

species in circumstellar clouds? Köhler, Gail & Sedlmayr (1997)

investigated this possibility and eventually concluded that the nu-

cleation rate of MgO would be too small in stellar environments

for it to form stable dust seeds. It appeared that MgO vapour could

be supercooled significantly, leading to a lower-than-expected con-

densation temperature, so that it no longer stood out on the ba-

sis of its high dew point temperature. The production rate of the

condensed phase was low even for large degrees of supercooling

since the work of formation of the critical cluster remained high.

These calculations were based on a semi-empirical potential model

that took into account several factors. These included the so-called

T-Rittner potential, which considers polarizability of ions due to lo-

cal electric fields in small clusters, and additional terms to account

for a suspected covalent character in the Mg–O bonding.

However, it has been found that magnesium oxide requires a

much more detailed potential model in order to correctly explain its

experimental data ranging from the interionic distance to phonon

dispersion curves. In this work, we therefore revisit the calculations

of the critical work of formation of MgO, using a potential that is

a combination of the ‘compressible ion model’ (CIM) and the ‘po-

larizable ion model’ (PIM) that was developed by Wilson and col-

leagues (Wilson & Madden 1996; Wilson, Pyper & Harding 1996b;

Wilson 1997; Rowley et al. 1998). It is a sophisticated, transferable

interionic potential designed to provide a better description of the

properties of MgO clusters than any other models used in earlier

studies. It not only considers the polarizability of ions, but also al-

lows for changes in an ion’s size and shape. The ions themselves are

seen to be ‘breathing’ individually, making the model significantly

more detailed than earlier models.

In the next section, the potential model of the previous studies by

Köhler et al. is noted down for comparison and Section 3 summarizes

the more accurate model of Wilson et al. The scheme for obtaining

cluster-free energy is described in Section 4, followed by the results

in Section 5.

2 P OT E N T I A L U S E D P R E V I O U S LY

Some important issues regarding the molecular modelling of small

MgO clusters have been discussed by Johnston (2003). Here, we

briefly note the form of the MgO potential used in the earlier study

of Köhler et al. (1997). Details such as numerical parameters are

omitted here and can be found in the original publication.

Magnesium oxide is a highly ionic species when the interionic

distance is close to equilibrium. Ionic crystals are usually described

by the Born–Mayer (B–M) potential (Born & Mayer 1932), the

simplest form of the potential energy being

UB–M = 1

2

∑
�, j
��= j

Q� Q j

r� j
+ 1

2

∑
�, j
��= j

A� j exp

(
− r� j

ρ� j

)
. (1)

The first summation represents Coulomb interaction between

charges Q� and Qj , situated at lattice sites labelled � and j, respec-

tively, and whose mutual separation is r�j . The second summation

quantifies the repulsion due to the overlap of the electron densities

of two ions situated at � and j. The parameter A�j is the strength of

this repulsion and ρ�j measures how steep the repulsive potential is.

In the B–M potential, individual ions are considered to be spher-

ical charged distributions packed together in a stable lattice config-

uration. For an infinitely large lattice with high symmetry, this may

hold true since electric fields in the immediate vicinity of a given ion

would cancel each other out. When one deals with small clusters,

however, this symmetry is lost and hence each ion will experience

a net electric field, which leads to the ion’s polarization (Rittner

1951).

In addition to polarization effects, one also needs to keep in

mind that the B–M potential is primarily useful for the purely ionic

group I–VII compounds, whereas MgO is a group II–VI compound.

The relatively moderate difference in the electronegativity of MgO

ions seemed to suggest a significant contribution of covalent bond-

ing (Pauling 1960), which may be described through the Morse

potential.

Keeping in mind these two effects, the full potential employed in

the previous work was

UKoh =
∑

�, j pairs

A e− 2r� j
ρ −

∑
�, j pairs

B e− r� j
ρ

+
∑

�, j pairs

Qeff
� Qeff

j

r� j
−

∑
�, j pairs

Qeff
� (μ j · r � j )

r 3
� j

, (2)

where an effective charge Qeff
� is used rather than the bare charge

Q�, due to the lower electronegativity difference of the ions in MgO

(Ziemann & Castleman 1991). μj is the induced dipole moment at

the position of ion j, generated by the local electric field E j due to

all charges Qeff
k , and can be expressed as

μ j = α j E j = α j

∑
k

k �= j

Qeff
k r k j

r 3
k j

. (3)

In equation (2), A and B are the scaling prefactors appearing in the

Morse potential and are related to the depth of the potential.

3 P OT E N T I A L U S E D I N T H I S WO R K

The potential used for the present calculations is borrowed from a

complex model that was developed through a series of publications

(Wilson et al. 1996b; Wilson & Madden 1996; Wilson 1997; Rowley

et al. 1998) in order to include a number of effects in MgO. The most

radical of these is that individual ions are treated as compressible

balls of charge distribution. This is a significant departure from the

models described in the previous section, in which electron clouds

of two neighbouring ions were allowed to overlap each other, but
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the ions maintained their original identity in terms of ionic radii.

The only way ionic shape deformation was allowed in the Rittner

potential, for example, was through polarization effects in finite

size (small) clusters. It is therefore often termed a ‘rigid ion model’

(RIM). In the CIM (Wilson et al. 1996b), the size of an ion is allowed

to change via compression of its charge distribution, effected by

the neighbouring ions. Polarization effects are then added through

the PIM (Wilson & Madden 1996) and to further the refinement,

there is also a scheme for allowing aspherical shape deformations

of the ion (Rowley et al. 1998).

3.1 Compressible ion model

As the starting point of the CIM (Wilson et al. 1996b), the B–M

potential is again used, but with a more elaborate form

UB–M = 1

2

∑
�, j
��= j

Q� Q j

r� j

+ 1

2

∑
�, j
��= j

A� j exp[−a� j (r� j − σ� − σ j )]

− 1

2

∑
�, j
��= j

[
C� j

6

r 6
� j

f � j
6 (r� j ) + C� j

8

r 8
� j

f � j
8 (r� j )

]
(4)

= UCou + Urep + Udisp, (5)

that is, the potential is a sum of Coulombic attraction, short-range

repulsion and an additional dispersion term. The repulsive potential

in the second summation now includes ionic radii σ � and σ j (cf.

equation 1) and the range parameter, a�j , characterizes the shape of

the charge density. C�j
6 and C�j

8 are the dipole–dipole and dipole–

quadrupole dispersion parameters, respectively, relevant to interac-

tion between species � and j. These can be derived from ab initio
calculations or by experiments (Pyper 1986). f �j

n (r�j ) are the damp-

ing functions to characterize the effect of the overlap of electron

densities of ions � and j and are represented by the so-called Tang–

Toennies functions (Tang & Toennies 1984). When the overlap be-

tween two ions’ wavefunctions is negligible, the damping functions

are unity, but they drop towards zero as the overlap becomes signifi-

cant. Hence, the functions f �j
n (r�j ) reduce the effect of the dispersion

terms in overlapping electron shells.

Ionic compression effects are accounted for by modifying the

repulsive part of the potential, Urep (second term of equation 4). In

the CIM, the repulsive potential is a function of not only the ionic

positions ({r �}�=1,N ), where N is the total number of ions in the

system, but also the change in the instantaneous ionic radii, δσ �,

with respect to some reference values σ̄�. Further, Urep can be seen

to be arising from two contributions: (i) the overlap between the

electron clouds of two neighbouring ions (Uov) and (ii) the energy

it costs to deform each ion’s electron density by the amount δσ �,

denoted by Uself. In other words,

Urep

({r �, δσ�}�=1,N

) = Uov

({r �, δσ�}�=1,N

)
+ Uself

({r �, δσ�}�=1,N

)
. (6)

The simplest form for Uov is

Uov

({r �, δσ�}�=1,N

)
=

∑
�, j pairs

A� j exp{−a� j [r� j − (σ̄� + δσ�) − (σ̄ j + δσ j )] }. (7)

The Mg2+ ion is assumed to be electronically rigid compared to

O2− owing essentially to the electronegativity of the latter and also

because the polarizability of Mg2+ is some three orders of magnitude

smaller than that of O2− in the crystal. A suitable form for Uself for

an oxide ion is

Uself

({δσ�}�=1,N

) =
∑

�

D (eβ δσ� + e−β δσ� ), (8)

where 2D is the energy of the reference ion without any compression

(δσ � = 0) and can be taken as the second electron affinity of oxygen

(Harding & Pyper 1995). The parameter β is such that Dβ2 is the

harmonic force constant that resists the ion’s breathing originating

from the compression–decompression process.

3.2 Polarizable ion model

In this model, polarization effects are represented in a more real-

istic way than through the T-Rittner method. One has to not only

consider polarization due to electric fields and field gradients due to

the charges and dipole moments of neighbouring ions, but also the

fact that as an ion’s immediate neighbour moves off its lattice site,

the shape of the confining potential changes. This in turn leads to

additional short-range effects in the polarization potential energy.

Furthermore, it turns out that the ‘covalent’ bond contribution sus-

pected in the earlier work is merely a manifestation of thoroughly

defined polarization effects (Wilson & Madden 1993, 1994).

In the PIM (Wilson, Madden & Costa-Cabral 1996a; Rowley

et al. 1998), additional degrees of freedom (d.o.f.) are assigned to

each ion � alongside its position r � and the instantaneous change

in its radius discussed in the CIM. These are the electric dipole

moment μ� = {μα
�}(α=x,y,z) and the quadrupole moment θ� =

{θαβ

� }(αβ=xx,yy,zz,xy,xz,yz). In other words, μ� has three components,

whereas θ� has six, although θ
αβ

� = θ
βα

� implies that only five com-

ponents of θ� are independent. The Greek superscripts α, β, etc.,

take on any of the Cartesian coordinate values x, y or z here. The

dipole and quadrupole moments are now related to the local electric

field via the relations (cf. equation 3):

μα
� = ααβ Eβ (r �) + 1

3
Bαβ, γ δ Eβ (r �)Eγ δ(r �) (9)

and

θ
αβ

� = 1

2
Bαβ, γ δ Eγ (r �)E δ(r �) + Cαβγ δ Eγ δ(r �). (10)

Here, Eα and Eαβ are components of the electric field and field gra-

dient, respectively. α and C are the dipole and quadrupole polariz-

abilities and B is the dipole–dipole–quadrupole hyperpolarizability.

After some elaborate analysis, it is possible to show (Buckingham

1967) that for a spherical ion, the components of α, C and B are

determined by a single number.

The route to a generalized polarization potential is quite involved.

However, it has been noted (Rowley et al. 1998) that for MgO,

quadrupolar polarization effects are negligibly small in explaining

phonon dispersion curves. Hence, if one considers only dipole ef-

fects, the polarization contribution can be written as

Upol

({r �,μ�}�=1,N

) =
∑

�, j pairs

f (1)(r� j ) Q�T (1)(r � j ) · μ j

+
∑

�, j pairs

μ�T (2)(r � j ) · μ j

+
∑

�

(
1

2

)
k� μ2

�.
(11)
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The terms with k� represent the energy required to polarize the ion.

The parameters k� are harmonic and anharmonic force constants and

are related to polarizabilities α, C and B (Wilson et al. 1996a). T (1)

and T (2) are the charge–dipole and dipole–dipole interaction tensors

(Buckingham 1967), whose components are expressed, respectively,

as

T α
� j = ∇α

1

r� j
and T αβ

� j = ∇α∇β

1

r� j
. (12)

The radial function f (1)(r�j ) modifies the interaction of charges with

induced dipoles. It has a short-range effect only and is effective over

length-scales of nearest-neighbour separations. These functions are

generally chosen to be of the form of the Tang–Toennies dispersion

damping function

f (nk )(r� j ) = 1 − e−br� j

nk∑
k=0

(br� j )
k

k!
, (13)

where b is the reciprocal of the length-scale over which the damping

is effective.

3.3 Aspherical ion model

The expressions for the repulsive potential given in equations (7)

and (8) apply well for spherical compression of the ion. However,

they still do not accurately reproduce desired phonon dispersion

curves for MgO. For a better description of the interactions, one

needs to consider aspherical ion deformation. For instance, an ox-

ide ion is inhomogeneously compressed by a number of magnesium

ions from different directions (maximum six neighbours) and the re-

sulting shape of the O2− ion would not be spherical. To incorporate

aspherical compression, some modification of the repulsive poten-

tial is required. This is done by including yet more d.o.f. in terms of

the parameters of dipole and quadrupole symmetry, ν� (3 d.o.f.) and

κ� (5 d.o.f.), which control the shape of the ion’s repulsive wall. The

‘aspherical ion model’ (AIM) is an extension of the CIM in which

Uov and Uself take more complex forms. The cation–anion part of

Uov is generalized to

Uov

({r �, δσ�,ν�,κ�}�=1,N

)
=

∑
� ∈ anion

∑
j ∈ cation

A −+ exp
{−a−+

[
r� j − (σ̄� + δσ�) − (σ̄ j )

−S(1)(r � j ) · ν� − S(2)(r � j ) · κ�

]}
, (14)

where S(1) and S(2) are interaction tensors whose elements are given

by

S(1)
α (r ) = rα

r
and S(2)

αβ (r ) = 3 rαrβ

r 2
− δαβ . (15)

Here δαβ is the Kronecker delta. The self-energy of the CIM is gener-

alized such that the energy required to cause the shape deformations

of dipolar and quadrupolar symmetry is also considered:

Uself

({δσ�,ν�,κ�}�=1,Nanion

)
=

∑
� ∈ anion

[
D

(
eβ δσ� + e−β δσ�

) + (
eξ2|ν�|2 − 1

)
+

(
eη2|κ�|2 − 1

) ]
, (16)

where ξ and η are two ‘force constants’ that can be chosen by

noting high-symmetry points on the phonon dispersion curve. Here,

we have assumed the cations Mg2+ to be non-compressible and

the asphericity effect on the O2−–O2− interactions has also been

neglected since these effects have been found not to be influential in

reproducing the observed phonon curves (Rowley et al. 1998). The

variables ν� and κ� minimize the total repulsive energy at each step

of the molecular dynamics (MD) simulation.

3.4 Full potential for MgO

To recap, the CIM makes a number of modifications to the repulsive

part of the potential in the B–M expression (4). In its simple form,

the second term of equation (4) is replaced by equations (7) and

(8), but if one considers details of dipolar and quadrupolar shape

distortions, a combination of equations (14) and (16) would be more

accurate. In addition, one needs to include the polarization potential,

as given in equation (11).

Hence, the full potential for MgO, including all the com-

pression, polarization and aspherical deformation effects, now

reads

UCIM+PIM =
∑

�, j pairs

Q� Q j

r� j

−
∑

�, j pairs

[
f � j
6 (r� j )C

� j
6

r 6
� j

+ f � j
8 (r� j )C

� j
8

r 8
� j

]
+ Urep + Upol,

(17)

where

Urep =∑
� ∈ anion

∑
j ∈ cation

A −+ exp
{−a−+

[
r� j − (σ̄� + δσ�) − (σ̄ j )

− S(1)(r � j ) · ν� − S(2)(r � j ) · κ�

]}
+

∑
� ∈ anion

[
D (eβ δσ� + e−β δσ� )

+
(

eξ2|ν�|2 − 1

)
+

(
eη2|κ�|2 − 1

) ]
. (18)

and Upol is given by equation (11).

4 F R E E E N E R G Y C A L C U L AT I O N

4.1 Statistical mechanics

The free energy of MgO clusters can be calculated by obtaining

their harmonic frequencies using an MD simulation that employs

the potential model described in the preceding section. These fre-

quencies are then used in the equations of homogeneous nucleation

(Ford 2004) some of which are summarized below.

Using expressions for the translational, rotational and vibrational

partition functions (Ztran, Zrot and Zvib, respectively), the Helmholtz

free energy of a solid molecular cluster containing i diatomic

monomers (such as MgO) can be expressed as

F (i) = U0(i) − kBT ln(Z tran Zrot Zvib)

= U0(i) − kBT ln

{
V

[
2π

(∑
i m

)
kBT

h2

]3/2

π1/2

χ(
8π2kBT

h2

)3/2

(I1 I2 I3)1/2

6i−6∏
k=1

kBT

h̄ωk

}
, (19)

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 291–298



MgO as the primary nucleating dust species 295

where U0(i) is the potential energy of the crystal at the mean atomic

positions, kB is Boltzmann’s constant, T is the temperature, V is

the volume of the container in which the cluster is able to translate

freely,
∑

i m denotes the cluster total mass, h is Planck constant, χ

is the symmetry number associated with a given crystal geometry,

I1, I2 and I3 are the three principal moments of inertia of the cluster

about the centre of mass when the atoms are in their mean positions

and ωk(k = 1, 2, . . . , 6i − 6) are the angular frequencies of the

vibrational modes (Abraham 1974; Mandl 1988).

In the bulk phase, the chemical potential of a single diatomic

monomer of vapour is

μv = U mon
0 − kBT ln

[
1

ρv

(
2π m kBT

h2

)3/2

(
8π2kBT

h2
Imon

)
kBT

h̄ωmon

]
, (20)

where Umon
0 is the monomer’s potential energy at the mean atomic

positions, m is the monomer mass, ρv is the number density of the

vapour monomers and is related to the vapour pressure p by ρv kB

T = p. The parameter Imon is the moment of inertia of the monomer

about its centre of mass and ωmon is the angular frequency of the

vibrational mode of the free monomer.

The work of formation of a crystal of size i from the vapour phase

is

W(i) = F (i) − iμv. (21)

However, the expression forW(i) in equation (21) cannot be utilized

directly if one wishes to calculateW(i) from an MD trajectory since

the expression for F (i) contains volume V that must be eliminated.

To solve this difficulty, it is useful to note that the nucleation rate is

often written as

J = Zβ∗exp

(
− W∗

kBT

)
, (22)

where β∗ is the rate at which monomers are attached to a cluster of

critical size i∗,W∗ is the work of formation for the critical cluster

size and Z is the dimensionless Zeldovich factor that is given by

Z =
[ −1

2πkBT

d2W(i)

di2

]1/2

. (23)

The Zeldovich factor has been derived within the Becker–Döring

framework of nucleation (Becker & Döring 1935) and equation (22)

is not a result of the classical nucleation theory despite the appear-

ance of an exponentiated free energy in it (Ford 2004). The cal-

culated free energies may be used to derive the growth and decay

rates that are used to specify the Becker–Döring equations. Equa-

tion (22) has been obtained by doing this and by solving the resulting

Becker–Döring equations. The more elaborate Becker–Döring ex-

pression for nucleation rate is of the form

J = β1n1

1 + ∑imax

i=2

∏i
j=2

(γ j/β j )
, (24)

where βi is the rate at which molecules attach themselves to a cluster

consisting of i monomers, γ i is the rate at which molecules are lost

from clusters of size i, n1 is the mean population of monomers in the

system and imax is the largest cluster size considered in the system.

In order to use expression (24), one requires to input the parameters

βi and γ i for a range of cluster sizes, which may not necessarily be

easy to obtain. The expression given in equation (22) circumvents

this difficulty.

According to equation (22), the nucleation rate per unit volume

is given by

JV = J

V
= Zβ∗exp

[
− (W∗ + kBT lnV )

kBT

]
= Zβ∗ ρv exp

[
− (W∗ + kBT lnV )

kBT
− lnρv

]
. (25)

On the other hand, the classical nucleation rate per unit volume can

be written as

JV ,clas = Zβ∗ ρv exp

(
−W∗

clas

kBT

)
. (26)

Comparing equations (25) and (26) allows us to write the effective

classical work of formation at the critical cluster size i∗, which can

then be generalized for all cluster sizes as

Weff(i) = F (i) − iμv + kBT ln(ρvV ). (27)

From equation (19), it is apparent that F (i) + kBT lnV would be

independent of the volume and knowledge of the number density of

the vapour would thus allow us to estimate the work of formation

using equations (19), (20) and (27).

The number of i-clusters per unit volume is given by

ρi = ni

V
= exp

[
− (W(i) + kBT lnV )

kBT

]
. (28)

The cluster population densities have been calculated according to

a quasi-equilibrium expression using the calculated free energies.

If the system were driven away from equilibrium, for instance by

a very rapidly changing temperature, then corrections would be re-

quired. Nevertheless, the equilibrium populations are useful since

they provide a clear picture for the onset conditions for nucleation.

Calculations of the nucleation rate for a particular temperature his-

tory would in general require the solution to a set of kinetic Becker–

Doring equations.

4.2 Molecular dynamics

An inspection of the relevant equations, particularly equations (19),

(20) and (27), shows that in addition to the vapour density of

MgO monomers, one needs to know the system potential energy

at the mean atomic positions, U0(i), plus the mean ionic separa-

tions to calculate the moments of inertia, I1, I2 and I3, plus the

vibrational frequencies, ωk , within the clusters. To obtain these

quantities, the CIM + PIM potential was implemented using an

MD simulation developed by Wilson et al., with the parame-

ters appearing in the potential model chosen as in Wilson et al.

(1996b), Wilson & Madden (1996), Wilson (1997) and Rowley et al.

(1998).

In the bulk solid phase, MgO displays a simple cubic lattice

structure of B1 type similar to NaCl (rocksalt), although it has

been shown that for clusters smaller than 32 MgO monomers,

nanotubes of stacked hexagons are energetically more favourable

(Wilson 1997). To start with, in the MD simulation, some nominal

lattice structure was chosen for a given cluster size and the structure

was then relaxed by performing energy minimization through the

steepest-descent method. The basic idea in this method is to fol-

low the gradient of the potential energy surface through successive

small steps until a minimum is found, that is to say, starting from

the nominal lattice configuration, the vector

∇U =
(

∂U

∂x1

,
∂U

∂x2

, . . . ,
∂U

∂x3N

)
, (29)

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 291–298



296 J. S. Bhatt and I. J. Ford

where x1, . . ., x3N are the ionic coordinates, is calculated. From this,

a new set of ionic positions are calculated along the direction of −∇
U by calculating the new ionic coordinates[{r �}�=1,N

]
n+1

= [{r �}�=1,N

]
n
− �n∇U , (30)

where the subscripts n and n + 1 denote two successive iterative

steps and �n is a small step size. This procedure is continued until a

configuration corresponding to a minimum in the potential is found

within a small tolerance. This may prove to be a slow procedure

sometimes, in which case, conjugate gradient minimization may be

performed (Press et al. 1992).

In such an energy-minimized configuration, U0 is equal to the

total energy of the cluster since the crystal has no kinetic energy and

the interionic distances can also be measured easily in the absence

of vibrational motion. The vibrational frequencies, ωk , were then

calculated by deriving the dynamical matrix of force constants from

the relaxed structure. This was calculated in the MD simulation by

displacing each ion of the relaxed lattice structure by a small amount

one by one and measuring the force it experiences as a function of

the displacement with respect to the relaxed position. It is assumed

that the mutual force F�j experienced between the jth and the �th ion

due to the displacement of the jth ion by an amount δxj is governed

by Hooke’s law, written in tensorial form as

Fα
� j = −kαβ

� j δxβ

j , (31)

where kαβ

�j is the spring constant. α and β here go from 1 to 3 and

label the components of the force and displacement. In a system

of N ions, each having 3 d.o.f., there will be 3N spring constants.

Hence, the order of the dynamical matrix, D, which is composed of

these spring constants, will be 3N. One then finds the eigenvalues

i = 1 1:O1:Mg

i = 2

i = 3

i = 4

i = 5

i = 6

i = 8

i = 9

i = 10

i = 11

i = 12

i = 13

i = 14

i = 15

i = 16

i = 18

i = 21

i = 24

Figure 1. Various cluster geometries studied. Brighter balls are Mg2+ ions and the darker ones are O2−.

λk of the mass-weighted dynamical matrix

D′ = M−1/2 DM−1/2, (32)

where M is a diagonal matrix containing the masses of the 6i oscil-

lators on its diagonal (Ashcroft & Mermin 1976).

The dynamical matrix, and hence D′, provides 6i eigenvalues in

the case of a crystal with i molecules of MgO. However, six of

them will, in principle, be zero because the modes corresponding to

the entire crystal’s translation in three dimensions plus rotation with

respect to the three principal axes cannot contribute to the vibrational

modes. Hence, we are left with 6i − 6 non-zero eigenvalues of D′,
except in the case of an isolated MgO monomer, which has one

non-zero eigenvalue. The vibrational frequencies ωk are related to

these eigenvalues by

ωk =
√

λk, (33)

which were used to obtain the vibrational free energy and eventually

the total free energy of the MgO clusters using equation (19).

5 R E S U LT S A N D D I S C U S S I O N

Condensation of gaseous species around M stars is believed to oc-

cur somewhere in the temperature range of 800–1200 K and in the

majority of cases, it is above 1000 K (Nuth & Donn 1982, 1983;

Gail & Sedlmayr 1986, 1998). A number of possible cluster ge-

ometries containing up to 24 MgO monomers were considered, the

relaxed structures of which are shown in Fig. 1. By calculating the

free energy of each cluster as well as that of the monomer as dis-

cussed in Section 4, the effective work of formation of these clusters

(equation 27) and the cluster number densities (equation 28) were

evaluated as a function of their size i.
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The value of initial MgO vapour concentration was chosen to be

ρ1 = 106 m−3, which is a typical value in shells surrounding M stars

(Patzer, Köhler & Sedlmayr 1995; Köhler, Gail & Sedlmayr 1997).

In a circumstellar outflow, this would not necessarily be the number

density of MgO free monomers, for a vapour moving away from

the central star will cool gradually and molecular clusters will be

formed, consuming the free monomers and reducing their number

density. Hence, an iterative method was used which ensured that the

total density of MgO units remained constant even after considering

the number densities of all the cluster sizes considered. We do this by

taking a trial value of monomer density, ρv, and then evaluating the

distribution ρi and calculating ρtot = ρv +2ρ2 +3ρ3 +. . .+imaxρimax

using equation (28), where imax is the largest cluster size considered

(imax = 24 in the present calculations). If ρ tot does not match the

desired value of ρ1, we choose an improved trial value of ρv and

continue to perform the calculation in this way until ρ tot ≈ ρ1 within

a small tolerance.

The effective work of formation obtained in this way for three

different temperatures covering the range of interest is shown in

Fig. 2, while Fig. 3 shows the corresponding distribution ρi . No dis-

tinct peak is visible inWeff(i) and its value quickly rises to hundreds

of kB T , which indicates a lack of nucleation of MgO clusters in the

given temperature range. This is also evident from the extremely

small number densities for most cluster sizes, except for i = 2 and

3. The peak around these two sizes in Fig. 3 is a little unusual and

suggests that MgO is an associative species, which prefers remain-
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Figure 2. Effective work of formation, , as a function of the MgO cluster

size for various temperatures and a monomer concentration of 106 m−3. The

full line is drawn considering that the cluster which requires the least work

of formation will be the most favoured among each size.
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Figure 3. Distribution of the number densities of i-clusters for various tem-

peratures and a monomer concentration of 106 m−3. The full line connects

the most-abundant clusters of each size.
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Figure 4. Number densities of various MgO cluster sizes as a function of

temperature, with a fixed monomer concentration of 106 m−3.

ing in clusters of (MgO)2 and (MgO)3 rather than as free monomers,

at least under the circumstellar conditions mentioned above.

Fig. 4 shows how the number densities of clusters evolve as the

circumstellar outflow moves away from the central star and cools

down, assuming a constant vapour density. At around 1500 K, only

monomers are predominant, but as the temperature drops, their con-

centration drops as (MgO)2 and (MgO)3 start to dominate. The total

number density of MgO units remains fixed at 106 m−3 during the

whole process.

What if the initial number density of MgO monomers were to be

significantly greater than 106 m−3? Fig. 5 shows the work of forma-

tion curves for two arbitrarily chosen higher values, ρ1 = 1015 m−3

and 1020 m−3, each at the temperature T = 800 K, which is the lower

limit of the temperature range of interest. For comparison, the T =
800 K curve from Fig. 2 has also been reproduced with these. The

curve for ρ1 = 1015 m−3 does seem to be heading towards a peak

value at some cluster size soon after i = 25, but the work of for-

mation has already reached several dozens of kB T in the curve

shown. The nucleation rate per unit volume, JV , is proportional to

exp(−W∗/kBT ), whereW∗ is the peak value ofW(i) (equation 25).

Hence, nucleation in such a system would be expected to be an ex-

tremely inefficient process. Comparing this with the curve for ρ1

= 1020 m−3, for which W∗ appears to be very small (perhaps neg-

ative), it can be said that notable nucleation would only occur for

initial vapour densities well above 1015 m−3. Such MgO monomer

concentrations are, however, atypical of circumstellar shells around

oxygen-rich stars. Hence, MgO may be discarded as a candidate
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Figure 5. Effective work of formation, , as a function of the MgO cluster

size for various monomer concentrations, all at a fixed temperature of T =
800 K. The full line joins the clusters that require the least work of formation

for each size.
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for the primary nucleating species in stellar winds in those environ-

ments.

6 C O N C L U S I O N

By utilizing the theory of homogeneous nucleation, we have ex-

plored the possibility that MgO could be the primary nucleating

material in circumstellar shells around oxygen-rich M stars. To do

this, a sophisticated potential model for MgO was used, which con-

siders a number of details of the interactions within small MgO

clusters. The model allows ionic shape deformations by modelling

the compressibility of individual ions as well as considering non-

vanishing polarization effects in small clusters. This model is much

more complex than the ones previously used in similar studies of

MgO.

Free energy calculations based on this model reveal that the work

of formation required for the nucleation of MgO particles to occur

is at least hundreds of kB T in the temperature range of 800–1200 K

for an initial vapour density of 106 m−3. Hence, MgO can be ruled

out as a likely candidate for the primary nucleating dust species. It

was found that meaningful nucleation rates for MgO would only be

achieved in such a temperature range if the initial vapour density

was much larger than some 1015 m−3. However, such large concen-

trations of MgO are not found in oxygen-rich circumstellar shells.

The non-possibility of MgO nucleation is in agreement with a

similar conclusion reached in earlier studies carried out with the

help of a much simpler potential model (Köhler et al. 1997).
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