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Nucleation theorems, the statistical mechanics of molecular clusters,
and a revision of classical nucleation theory

I. J. Ford
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

~Received 21 February 1997; revised manuscript received 5 June 1997!

The nucleation theorems relate the temperature and supersaturation dependence of the rate of nucleation of
droplets from a metastable vapor phase to properties of the critical molecular cluster, the size that is approxi-
mately equally likely to grow or decay. They are derived here using a combination of statistical mechanics and
cluster population dynamics, using an arbitrary model cluster definition. The theorems are employed to test the
validity of the classical theory of homogeneous nucleation and its ‘‘internally consistent’’ form. It is found that
the properties of the critical cluster for these models are incorrect, and it emerges that this occurs because the
classical theory employs the free energy of a fixed droplet, rather than one free to take any position in space.
Thus a term representing positional, or mixing, entropy is missing from the cluster free energy. A revised
model is proposed, based on the capillarity approximation but with such a term included, and it is shown that
it is fully consistent with the nucleation theorems. The model increases classical rates by factors of approxi-
mately 104–106. Other nucleation models should be tested for internal consistency using the same methods.
Finally, the nucleation theorems are used to extract the excess internal energies of molecular clusters from
experimental data for several substances.@S1063-651X~97!08910-1#
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I. INTRODUCTION

The formation of clouds and fog in the atmosphere
perhaps the most familiar example of the transformation o
vapor into liquid droplets. Water vapor in air that cools b
low the so-called dew point becomes thermodynamically
stable with respect to the liquid phase and droplets
formed. The thermodynamics of the phase change are
understood, but the dynamics are not: no fully succes
theory of the rate of droplet formation has emerged in sp
of seventy years of effort.

Conceptually, the process of nucleation is simple enou
Free molecules are continually colliding with one anoth
and occasionally becoming bound: dimers and largerclusters
of molecules are built up in this way. Clusters can also lo
molecules by occasional evaporation and so individual c
ters follow a fluctuating history of growth and decay. Wh
the vapor phase is thermodynamically stable with respec
the condensed phase, decay is more likely than growth,
large clusters tend to fall back to smaller sizes, or break a
completely into free molecules.

However, when the bulk condensed phase becomes
modynamically stable with respect to the vapor phase, oc
sional growth excursions by individual clusters into larg
size classes can sometimes lead to continued growth. Th
because when the condensed phase is stable, growth is
likely than decay for large clusters. However, such sizes c
not be reached without the prior formation of small clust
~except by very unlikely multimolecular collisions! and these
often remain thermodynamically unstable with respect to
free molecules. Decay continues to win for small cluste
even when the bulk condensed phase is the thermodyn
cally stable state. The phase transition is therefore brou
about by infrequent fluctuations by individual cluste
through the unstable size range, past the critical size, bey
561063-651X/97/56~5!/5615~15!/$10.00
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which the likelihood of growth exceeds that of decay, e
abling them to grow into large droplets. This is dropl
nucleation, and it increases in frequency as the vapor is m
more and more metastable with respect to the bulk c
densed phase, since this alters the mean growth and d
rates. For the simplest systems, the parameters that co
the nucleation rate are the temperature and the supersa
tion of the vapor, which is the ratio of the vapor pressure
the saturated vapor pressure.

If droplet nucleation takes place on the surface of an
isting particle, which is common in the atmosphere, the p
cess is called heterogeneous nucleation, but the more fu
mental homogeneous nucleation process involves only
interactions of the vapor molecules among themselves.
latter has received more attention, both theoretically and
perimentally.

The statistical mechanics of molecular clustering is p
haps the most natural theoretical framework for describ
nucleation. However, progress has been hampered by un
tainties in how to represent a physical cluster in statisti
mechanics. The picture of growth fluctuations of embryo
droplets that has been sketched above requires a clust
have a certain stability, so that it can truly be held to exist
a physical entity on the time scale of molecular collision
However, physical clusters cannot be absolutely stable
evaporation would never take place.

Mayer clusters@1# do not represent physical clusters, f
example, since there is no limitation on the separation
tween molecules: the definition will therefore include co
figurations that are unbound and ephemeral. Most definiti
of physical clusters involve the confinement of the molecu
to a small spatial volume in the hope that all such config
rations will be bound and can serve as model physical c
ters as required in the kinetic treatment of nucleation, a
that no bound states are excluded. This is a difficult a
perhaps impossible task, and some miscounting seems t
5615 © 1997 The American Physical Society
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5616 56I. J. FORD
inescapable. The cluster definition has an effect upon
predictions of the model, as we shall see.

The most common definition used in the literature
quires each molecule of a cluster to lie within a sphere c
tered on the center of mass of the group@2# and in further
refinements, for a molecule also to lie on the surface of
sphere@3–5#. This has been proposed since it is possible
enumerate all the configurations of molecules in a sys
that satisfy this cluster definition. This means that the ph
space integrals can be evaluated and cluster partition f
tions found. It is assumed that such a construction will
clude all the bound states of the component molecules
will include no undesired unbound states.

Other cluster definitions exist that would appear to
more natural, such as the Stillinger cluster@6#, where each
molecule need only lie in a particular region centered aro
any other molecule already in the cluster. However, the e
meration of molecular configurations satisfying this defi
tion is not easy analytically, nor can the definition exclu
unbound transitory states.

Possibly the best cluster definition of all would require
the molecules in the cluster to have a negative total ene
@7,8#. It would be the intermolecular potential that dete
mined whether a particular molecular configuration sho
be viewed as a physical cluster. However, this prescrip
would be complicated to realize in practice, and several
ficulties exist@8#. In fact the definition is not at all perfec
since it would fail to account for physical clusters whe
individual molecular energies become positive but where
cumstances, such as a collision, prevent the evaporatio
such an ‘‘unbound’’ molecule. Furthermore, one would ne
to calculate kinetic energies with respect to some refere
frame, and it is unclear which choice to make. Perhaps
best that can be done is to demand that the molecular po
tial energy should be less than the equipartitioned molec
kinetic energy.

The uncertainties in the construction of statistical m
chanical models@2,9#, and also the poor state of knowledg
about the intermolecular forces, have made it attractive
study simpler models instead. The prime example is the c
sical theory, which is based on the idea that clusters can
viewed as tiny droplets with a well-defined surface area
density, characterized by the properties of bulk conden
matter@10#. A related approach is to use a phenomenolog
cluster model, where the difficulties in the status of clust
are set aside by fitting parameters in the model to experim
tal data @11–13#. Nevertheless, a well-founded theory
nucleation is more likely to emerge from statistical mecha
cal considerations. However, in the light of the above disc
sion, it would be best to try to obtain results that were n
dependent on any particular choice of cluster definition.

This possibility has been pursued in the present pa
Results regarding the temperature and supersaturation de
dence of the nucleation rate are derived from the statist
mechanics and population dynamics of arbitrarily defin
clusters. These results are the two nucleation theorems.
first nucleation theorem was originally a conjecture based
classical nucleation theory@14#, which was then placed on
firmer ground using statistical mechanics@15# and then ther-
modynamics@16#. The second nucleation theorem was d
rived thermodynamically by the present author@17#.
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These previous derivations studied the probability of o
currence@15# or the work of formation@16,17# of the critical
cluster. The nucleation rate is proportional to a Boltzma
factor containing the critical cluster work of formation, an
the remainder of the expression is often called the kine
prefactor. The kinetic prefactor from classical theory w
used to complete the derivation of the theorems. In
present paper, however, the temperature and supersatur
dependence of the rate of nucleation is obtained direc
without the need to estimate the kinetic prefactor. Indeed
validity of the classical prefactor can be tested using
more general results obtained. The derivation using stat
cal mechanics also indicates how microscopic calculati
based on a grand ensemble for a single cluster can be u
together with the theorems, to predict the sensitivity of t
nucleation rate to experimental conditions.

The equilibrium statistical mechanics of a subsatura
vapor are described in Sec. II. The pressure of such a va
is less than the saturated vapor pressure at which the v
and liquid are in thermodynamic equilibrium. Molecula
configurations are classified as collections of clusters of v
ous sizes, and the grand partition function of the vapo
represented in terms of the partition function of a single cl
ter, according to some chosen cluster definition. The equ
rium system is then interpreted kinetically to obtain rate c
efficients for various growth and decay processes.

The nonequilibrium situation, where the vapor is sup
saturated and undergoing the nucleation of condensed p
droplets, is discussed in Sec. III. An expression for the nuc
ation rate is derived in terms of the properties of equilibriu
systems and this expression is then used to derive the nu
ation theorems in Sec. IV. These are then applied in Sec
to test the validity of the classical theory of nucleation and
‘‘internally consistent’’ derivative of it. Both models fail to
satisfy the theorems, and in both cases it is because the w
of formation of a fixed droplet is employed. The ‘‘pos
tional,’’ or ‘‘mixing’’ entropy discussed recently by Reis
et al. @18,19# is missing, and the models are therefore inco
sistent with the statistical mechanics. In the light of this,
propose a model based on the same capillarity approxi
tion, but which includes positional entropy and is in acco
with the theorems. Finally, the nucleation theorems are u
in Sec. VI to extract cluster properties from experimen
data, and conclusions follow in Sec. VII.

II. STATISTICAL MECHANICS OF SUBSATURATED
VAPOR

A. Equilibrium populations

The statistical mechanical treatment of an imperfect va
is traditionally developed using a canonical ensemble of s
tems of volumeV containingN molecules that have the abi
ity to associate into bound clusters due to mutual inter
tions. The law of mass action that determines the cluster
distribution in terms of cluster partition functions can be d
rived, but the method is not entirely satisfactory since th
is no external control over the pressure of the cluster m
ture, and hence the supersaturation of the vapor phase.
vapor pressure depends instead on the internal parameteV
andN, which need to be chosen to obtain the desired pr
sure.
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The development in this paper will take a slightly diffe
ent route by examining a grand canonical ensemble inst
The system of volumeV is considered to be in contact wit
a particle reservoir at a chemical potentialm so that the
number of moleculesN in the system fluctuates. These mo
ecules associate into clusters as before, and by varying
chemical potential, the mean pressure of the mixture of c
ters in the system can be controlled. The reservoir also
as a heat bath at a prescribed temperatureT.

If H(N) is the Hamiltonian of the system whenN mol-
ecules are present, andk is Boltzmann’s constant, the gran
partition function of the systemJ(m,T,V) is then propor-
tional to the integral of exp@2(H(N)2Nm)/kT# over the entire
phase space of molecular positions and momenta, sum
over all N from zero to infinity:

J~m,T,V!5 (
N50

`
1

N!h3NE )
j 51

N

d3xjd
3pj

3exp$2@H~N!2Nm#/kT%, ~1!

wherexj and pj are the position and momentum of thej th
molecule,h is Planck’s constant, andN! corrects for mo-
lecular indistinguishability.

The calculation ofJ can be greatly simplified by consid
ering the system to be occupied by populations of molec
clusters. The grand partition function of the system can t
be constructed from modified canonical partition functio
for single clusters ofi molecules~an i -cluster!. The defini-
tion of a molecular cluster will be left open, but it could, fo
example, require that all the molecules lie within a sphere
a certain volume centered on the center of mass of the w
set of molecules. Alternatively, it might instead be requir
that the separation between molecules within the clu
should not exceed a maximum distance~the Stillinger clus-
ter!. One could use any rule: a cluster could be defined a
configuration of molecules lying in a single plane. A sna
shot of the molecules in the system would then be classi
as a collection of clusters, with the numbers of clust
present depending on the cluster definition chosen. Thi
illustrated in Fig. 1. Different cluster populations emerge
different cluster definitions are used. However, as has b
stressed above, a nucleation theory based on a poor cl
definition is unlikely to be very successful, and one sho
attempt through the definition to include all physical clust
and exclude all ephemeral states.

There is a second implication of using an inappropri
cluster definition, which is the following. The calculation
the system grand partition function in terms of cluster pa
tion functions will be accurate only if the interactions b
tween molecules lying in different clusters are negligib
The total energy for a particular configuration of the m
ecules in the system can then be separated into indepen
contributions from each cluster. We wish to wri
H(N)'( iniHc( i ), where ni is the number of clusters
present in a given system configuration~using the chosen
cluster definition! and Hc( i ) is the i -cluster Hamiltonian,
which depends on the positions and momenta of the m
ecules that make up the cluster. The cluster definition ma
arbitrary, but clearly the level of approximation in the eva
ation ofJ will depend upon it. This will guide the choice o
d.
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cluster definition. For example, if intermolecular forces we
isotropic, then a definition that favors spherical cluste
would be a better choice than clusters based on a pla
criterion. On the other hand, if the intermolecular forc
were planar in character, then such a definition might not
unsuitable.

These points support the idea that a cluster should
defined as a collection of molecules that are bound energ
cally. This should minimize the cluster-cluster contributio
to the total energy: if a nearby molecule had a strong in
action with a cluster, an energy-related definition would
likely to include the molecule within the cluster. Cluste
cluster interactions could be taken into account in the fo
of a virial series@20#, but here we shall simply ignore an
cluster-cluster interactions in the Hamiltonian.

We now introduce a modified canonical partition functio
Zi for a cluster containingi molecules. This is related to th
integral of exp$2@Hc(i)2im#/kT% over the phase space acce
sible to molecules in the cluster:

Zi5
1

i !h3iE8)
j 51

i

d3xjd
3pjexp$2@Hc~ i !2 im#/kT%. ~2!

Clearly Zi5Qiexp(im/kT), whereQi is the canonical parti-
tion function. The cluster definition introduces constraints
the phase space available to the constituent molecules, w
can act upon both molecular positions and momenta,
which is indicated in Eq.~2! as a prime on the integratio
symbol. The phase space of molecules that form a cluste
simply a subset of the total phase space of a collection of
molecules. The subset depends on the cluster definition,
the difficulty in actually evaluating the partition function in
tegrals will of course depend on the definition chosen.

FIG. 1. A particular molecular configuration that contributes
the grand partition function of a subsaturated vapor, illustrating h
different cluster definitions can affect the evaluation of clus
populations. ClusterA is defined using a spherical shell centered
the center of mass of a set of closely associated molecules. Cl
B is defined instead using a criterion that molecules should
colinear. According to this criterion, only four molecules in caseA
can be considered to be a cluster. ClusterC is defined by the re-
quirement that the molecules are a fixed distance apart. Those
ecules that do not satisfy a chosen cluster definition are consid
to be monomers: according to definitionC, therefore, none of the
molecules in casesA andB is clustered.
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5618 56I. J. FORD
With a little thought, it is evident that the grand partitio
function of the complete system can be expressed in the
lowing form:

J5(
$ni %

S )
i 51

` Zi
ni

ni !
D , ~3!

where, as indicated, the sum is over all possible cluster
distributions $ni%. This grand partition function then con
tains, as it should, contributions from all possible configu
tions of molecules in the system, weighted by the appropr
energies if the total Hamiltonian separates into cluster c
tributions. The factor ofni ! corrects for overcounting due t
the indistinguishability of clusters.

Many previous evaluations of a cluster partition functi
have proceeded from this point by defining molecular po
tions with respect to the cluster center of mass, and t
integrating the coordinates of the cluster center of mass o
the system volume. This makes the modified partition fu
tion Zi proportional to the system volumeV. However, this
proportionality would result from any criterion that uses t
phase space configuration of the constituent molecule
determine whether they form a cluster. The fundamen
point is that for any configuration of molecules that satisfi
the definition, there will be others that correspond simply
spatially translated copies of the first. The summation
these contributions to the partition function introduces a p
portionality toV. The center of mass definition is not excl
sive, and in order to develop the statistical mechanics i
not necessary to introduce it. We note in passing that s
Zi is dimensionless, it should also be inversely proportio
to a quantity with the dimensions of volume. We shall retu
to the nature of this ‘‘scaling volume’’ later on.

The grand partition functionJ in Eq. ~3! is a sum of
contributions over a new phase space of all sets$ni%, i.e., all
possible cluster size distributions. The molecular posit
and momentum coordinates are subsumed into the clu
partition functionZi . A system containing no molecule
and a system containing a single cluster filling the en
system, are among the configurations taken into accoun
Eq. ~3!. There will be many possible other arrangemen
corresponding to intermediate molecular densities. Ther
no restriction in the grand ensemble on( i in i , the number of
molecules within the system.

The next step that is traditionally taken~but normally
within a canonical and not a grand canonical ensemble! is to
note thatJ in Eq. ~3! is dominated by a contribution from
one particular size distribution$ni

e%. In order to determine
this distribution, we simply extremize the logarithm of th
expression within the sum in Eq.~3!. We require

]

]ni
(
i 51

`

lnSZi
ni

ni !
D 50, ~4!

which leads, using Stirling’s approximation, to the followin
expression for the most probable, or equilibrium, size dis
bution $ni

e% for the given conditionsT andm:

ni
e5Zi . ~5!
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Using this approximation, the grand partition function b
comes

J5)
i 51

` Z
i

ni
e

ni
e!

5exp(
i 51

`

ni
e . ~6!

The pressurepv exerted by the noninteracting clusters with
the system for a size distribution$ni

e% is given by Dalton’s
law

pvV5(
i 51

`

ni
ekT, ~7!

and we see that the vapor pressure is a function ofm andT,
and thatJ5exp(pvV/kT) as required. The grand potential o
the whole system is2pvV. The grand canonical ensemb
does not allow the vapor pressure to be fixed exactly, si
fluctuations in cluster populations and thereforepv can oc-
cur, but these are negligible for a large system, and so
very good approximation, the vapor pressure in the system
controlled by the external parametersm andT, as we require.
Equation ~5! leads to the law of mass action:ni

e5

Qi(n1
e/Q1) i .

Putting Eq.~5! into Eq. ~7! we find

pvV5kT(
i 51

`

Zi . ~8!

The sum in Eq.~8! will only converge ifZi decreases suit
ably as a function ofi . It turns out that this limits the statis
tical mechanical ensemble to the study of vapors at or be
the saturated vapor pressure. Systems at a higher vapor
sure will not be globally stable: the true equilibrium sta
will be the bulk condensed phase. This constraint transla
into an upper limit for the chemical potential. Sinc
n1

e5Q1exp(m/kT) from Eq.~5!, we can introduce a referenc
population n1

es, which is the free molecule, or monome
population for a saturated vapor, and writen1

es

5Q1exp(ms/kT). ms is the chemical potential that produce
this reference population. We then deduce that

m5ms1kT lnS, ~9!

where we have introduced the saturation ratioS5n1
e/n1

es,
which so far is limited to values below unity. To a goo
approximation, for conditions well below the critical poin
n1

eskT'pvsV, and S'pv /pvs , where pvs is the saturated
vapor pressure. This confirms that whilem does not control
the total pressure exactly, it does control the partial press
of the monomers, and hence provides a very good exte
control over the saturation ratio.

Furthermore, the approximation that the Hamiltoni
should separate into contributions from independent clus
will also fail as the system becomes denser. No attempt
be made to describe the metastable, or supersaturated v
using statistical mechanics, since none will be needed.

The single cluster modified partition functionZi can be
expressed in terms of the single cluster grand potentialV( i ):

Zi5exp@2V~ i !/kT#5exp$2@F~ i !2 im#/kT%. ~10!
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56 5619NUCLEATION THEOREMS, THE STATISTICAL . . .
V( i ) and F( i ) are the grand potential and Helmholtz fre
energy, respectively, of a singlei -cluster in an otherwise
empty system of volumeV, at a temperatureT and chemical
potentialm. They depend on the cluster definition. From E
~5!, the equilibrium populations for sizesi and j satisfy

ni
e/nj

e5exp$2@V~ i !2V~ j !#/kT%. ~11!

B. Kinetic treatment

We now introduce a kinetic interpretation of this equili
rium situation. We consider that the equilibrium size dist
bution ni

e is the stationary solution of the following set o
population dynamics equations:

dni

dt
5(

j
njWj→ i2ni(

j
Wi→ j , ~12!

whereWi→ j is the coefficient that determines the mean r
at which transitions are made that convert aj -cluster into an
i -cluster. Recall that since the clusters defined in the sta
tical mechanics are supposed to model real physical clus
the rate coefficients in Eqs.~12! will describe such processe
as molecular capture and molecular evaporation to and f
embryonic droplets. The connection between rate coe
cients and cluster statistical mechanics is then given by

Wj→ i

Wi→ j
5

ni
e

nj
e

5exp$2@V~ i !2V~ j !#/kT%. ~13!

The kinetic interpretation can be taken a step further
assuming that the only important transitions are those
are brought about by the addition or loss of single molecu
to or from the cluster. The only nonvanishing rate coe
cients are thenb i5Wi→ i 11 for cluster growth, and
g i5Wi→ i 21 for cluster decay. They are related through

b i

g i 11
5exp$2@V~ i 11!2V~ i !#/kT%. ~14!

Transitions such as dimer addition to ani -cluster to form an
( i 12)-cluster have been considered elsewhere@21# and in
most cases they alter the nucleation rate only slightly, un
for some reason the dimer population is unusually large.

The rate of combination of single molecules~monomers!
and i -clusters to form an (i 11)-cluster is proportional to
n1

eni
e , so b i}n1

e . In fact, according to kinetic theory, th
growth rateb i is the molecular flux times the surface areaAi
of the i -cluster, assuming all collisions stick. The usual e
pression is

b i5
n1

ekTAi

V~2pmkT!1/2
5Sb i

s, ~15!

whereb i
s5n1

eskTAi /V(2pmkT)1/2, wherem is the molecu-
lar mass. We shall use the growth coefficientb i in Eq. ~15!
in the following development, which brings with it a certa
temperature and supersaturation dependence.~Other growth
regimes could be considered, for example, where diffus
limits the absorption rate!. The decay coefficientg i , how-
ever, is independent of supersaturation.
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Vasil’ev and Reiss@22,23# have suggested that Eq.~15!
can underestimate the true absorption rate by a factor o
to 2, if the nominal surface areaAi is used. This is brough
about by an attractive interaction between the cluster an
free molecule, which can alter the trajectories of approach
molecules. This enhancement will be neglected here,
would in any case only alter the nucleation rate by the sa
relatively small factor. A more significant implication of th
effect would be to introduce a dependence of growth r
upon the carrier gas pressure. The reasoning is that iner
molecules, which have been ignored hitherto, but which
necessarily present in nucleation experiments, might in
fere with the attraction between free molecule and clus
and change the absorption rate. Assuming that the evap
tion rate is not affected by the carrier gas in an equival
way, the nucleation rate could then be suppressed. Howe
this would seem to be a large effect only for high carrier g
pressures, when carrier gas molecules are often likely to
found within the attractive range of clusters, and so we w
neglect it here.

The situation considered so far is limited to saturati
ratiosS<1 controlled by the external chemical potentialm.
At m5ms the vapor just becomes saturated:S51 and
pv5pvs . The grand potential of thei -cluster for such con-
ditions will be given a subscripts and written as

Vs~ i !5F~ i !2 ims . ~16!

The ratio of rate coefficients is then

b i
s

g i 11
5exp$2@Vs~ i 11!2Vs~ i !#/kT%. ~17!

III. NUCLEATION RATE IN A SUPERSATURATED
VAPOR

The statistical mechanical treatment of a subsaturated
por in the previous section provides rate coefficients that
be used to study the population dynamics of clusters fo
supersaturated vapor (S.1). In this way, the process o
nucleation can be modeled. We rewrite Eq.~12! in the form

dni

dt
5b i 21ni 212g ini2b ini1g i 11ni 115Ji 212Ji ,

~18!

where Ji5b ini2g i 11ni 11 is the mean cluster current be
tween sizesi andi 11: the excess of growth transitions ov
decay transitions between the two sizes. The populati
here no longer carry the superscripte, which denoted equi-
librium in a subsaturated vapor. They are now a general
distribution determined by the dynamical equations~18!. The
growth rateb i is still given by Eq.~15!, but with S.1: we
now refer toS as the supersaturation rather than the satu
tion ratio. This enhanced growth rate is the driving force th
causes the nucleation of the new phase.

Note that we consider nucleation here to be the resul
mean rates of transitions in the population dynamics of cl
ters, whereas the picture drawn earlier was one of individ
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clusters growing and decaying stochastically, and occas
ally being driven to large, stable sizes.

The population equations are solved as usual for the
lowing boundary conditions. Firstly the monomer concent
tion is S times greater than that which occurs in the satura
vapor, i.e.,n15Sn1

es ~with S.1). Secondly, the population
at a sizeM11 is set to zero. It turns out that as long
M11 is large enough, it does not matter which particu
value is chosen. The conditionnM1150 prevents the system
from relaxing to the global equilibrium state where the co
densed phase fills the available volume. The cluster pop
tions are therefore held somewhat artificially in a state
perpetual nucleation of the phase transition.

If we consider the steady-state solution, such t
dni /dt50 andJi is a constantJ for all i , a process of elimi-
nation within the system of equations~18! leads to the fol-
lowing expression for the nucleation rate:
r

on
cl
id

e
um

al
n-

l-
-
d

r

-
a-
f

t

J5
b1n1

11(
i 52

M

)
j 52

i

~g j /b j !

. ~19!

The product ) j 52
i g j /b j can also be written as

(b1 /b i)) j 52
i g j /b j 21 and using Eqs.~15! and ~17! we then

get

)
j 52

i
g j

b j
5

b1

b i
exp$@Vs~ i !2Vs~1!#/kT2~ i 21!lnS%.

~20!

Substituting into the rate expression then gives
J5b1n1S 11(
i 52

M
b1

b i
exp$@Vs~ i !2Vs~1!#/~kT!2~ i 21!lnS% D 21

5
SpvsV

kT
exp$@Vs~1!2kTlnS#/kT%S (

i 51

M
1

b i
exp@Vs~ i !2 ikT lnS#/kTD 21

. ~21!
of
te
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he
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Note that the nucleation rate derived here is the numbe
clusters per second reaching the maximum size (M11) in
the volumeV. The dimensions are inverse time. Nucleati
rates are more usually defined as the number of parti
generated per second per unit volume, but we shall cons
the total current and not its density.

The usual procedure is now to represent the sum overi as
an integral between6`, and to expand the argument of th
exponential about the point where it reaches a maxim
which defines the critical sizei * :

S ]Vs~ i !

] i D
i 5 i*

2kT lnS50. ~22!

To see that the critical size is loosely the size that is equ
likely to grow or to decay, consider Eq.~14! for i 5 i * . We
have

b i*

g i* 11

'expF2
1

kTS ]V~ i !

] i D
i 5 i*

G51, ~23!

using Eqs.~9!, ~10!, ~16!, and~22!.
If we introduce the cluster work of formation

e~ i !5Vs~ i !2 ikT lnS, ~24!

then to a good approximation
of

es
er

,

ly

J5
SpvsV

kT
exp@e~1!/kT#Zb i* exp@2e~ i * !/kT#, ~25!

whereZ is the so-called Zeldovich factor given by

Z5F2
1

2pkTS ]2Vs~ i !

] i 2 D
i 5 i*

G 1/2

. ~26!

A small contribution from the derivative ofb i with respect to
i has been neglected. Note thatJ is proportional tob i* , so an
enhancement of this coefficient according to the ideas
Vasil’ev and Reiss@22,23# would enhance the nucleation ra
by the same factor.

Why is e( i ) the cluster work of formation? The cluste
work of formation is the change in the grand potential
going from an empty system to a system containing
i -cluster, for constant external conditions ofm andT. Since
the grand potential of an empty system is zero, the clu
work of formation is simplyV( i ), and Eq.~24! follows from
Eqs.~9!, ~10!, and~16!.

Equation~25! takes the form that is often proposed on t
following heuristic grounds. Since the critical cluster is t
size that is equally likely to evaporate or to grow, the fr
quency of nucleation should be proportional tob i* ni* , the
rate of attachment of monomers to critical clusters. T
population of critical clusters is equal to exp@2e(i* )/kT#.
@Strictly, this latter result is not valid for a supersaturat
vapor, but is an extrapolation of Eqs.~5! and ~10! for
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m.ms .# This accounts for the last two terms in Eq.~25!.
However, additional factors such asZ and exp@e(1)/kT#
emerge from the more rigorous approach outlined abo
Some of the factors in Eq.~25! correspond to the kinetic
prefactor referred to earlier.

IV. NUCLEATION THEOREMS

A. First nucleation theorem

Now we can examine the supersaturation and tempera
dependence of the nucleation rate and derive the nuclea
theorems.

We start with the exact expression forJ in Eq. ~21! rather
than the less unwieldy but more approximate version in
~25!:

J5
SpvsV

kT
exp@Vs~1!/kT#S (

i 51

M
1

b i
s
exp@„Vs~ i !

2 ikT lnS…/kT# D 21

, ~27!

where a factor of 1/S in both numerator and denominator h
been canceled. Taking the derivative with respect to lS,
holding T constant, we find

S ]J

] lnSD
T

5J2
J

(
i 51

M

P~ i !

S ]

] lnSD
T
S (

i 51

M

P~ i !D

5JS 11

(
i 51

M

iP~ i !

(
i 51

M

P~ i !
D , ~28!

where the weighting functionP( i ) is given by

P~ i !5
1

b i
s
exp$@Vs~ i !2 ikT lnS#/kT%. ~29!

We therefore find that

S ] lnJ

] lnSD
T

511 i m* , ~30!

where the cluster sizei m* is defined as the expectation valu
e.

re
on

.

i m* 5

(
i 51

M

iP~ i !

(
i 51

M

P~ i !

. ~31!

The sizei m* is equal to the critical sizei * under the same
approximations that were used earlier to derive Eq.~25! from
Eq. ~21!, namely, to replaceb i

s in Eq. ~29! by b i*
s and to

expand the exponent to second order abouti * given by Eq.
~22!. Then P( i )'P( i * )exp@2pZ2(i2i* )2# with Z given by
Eq. ~26!. The sums in Eq.~31! can then be replaced b
integrals over2`, i ,` and so

i m* '

E
2`

`

i exp@2pZ2~ i 2 i * !2#

E
2`

`

exp@2pZ2~ i 2 i * !2#

5 i * . ~32!

The distinction betweeni * and i m* will henceforth be
dropped.

Equation~30! is the nucleation theorem@14–16#. It tells
us that the supersaturation dependence of the nucleation
is related to the critical size. It has been used previously
extract i * from the slope of nucleation rate data plotte
against supersaturation~on a log-log scale! at constant tem-
perature. Earlier derivations concentrated on the supersa
tion dependence of the critical cluster work of formatio
e( i * ). The proof given here would appear to be more ge
eral, and the steps taken in reaching it have been carefully
out. The proof does not rely on a particular choice of clus
definition in the statistical mechanics. Some independenc
cluster definition was to be expected, since the earlier d
vations were made using arguments from thermodynam
Some approximations have been made, but we believe
are tenable in most situations. A significant advantage of
present statistical mechanical–kinetic derivation is that
~30! is an exact expression of the nucleation theorem, wh
takes into account the kinetic prefactor in the rate express
as well as the exponential term.

There is actually a hidden dependence on the cluster d
nition in Eq. ~30!. We have stressed several times that
cluster definition affects the calculation of the grand pote
tial, and this means that each cluster definition will produc
different critical size, and therefore a different dependence
the model nucleation rate upon supersaturation. Howe
when we come to use Eq.~30! to analyze experimental data
we implicitly make the reasonable assumption that a ‘‘p
fect’’ definition exists for physical clusters, and that the e
perimental data are giving us the critical size for that defi
tion: the actual critical cluster, which is equally likely t
grow or decay.

B. Second nucleation theorem

A second nucleation theorem has been derived rece
@17# using the methods of small system thermodynam
@24#. It concerns the temperature dependence of the nu
ation rate at constant supersaturation, and is in a sense
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conjugate to Eq.~30!, which we shall now refer to as the firs
nucleation theorem. We now prove it within the statistic
mechanical formalism. It is a rather lengthy derivation, w
particular effort spent in carefully evaluating small terms th
l

t

are then neglected. The final result appears in Eq.~48!, and
the reader could proceed directly to that point if desired.

Taking the derivative of Eq.~27! with respect toT, we
find
side the

f, if
S ]J

]TD
lnS

5S ]

]TD
lnS

SpvsV

kT
exp@Vs~1!/kT#S (

i 51

M

P~ i !D 21

5JS pvs8

pvs
2

1

T
2

Vs~1!2TVs8~1!

kT2
2

(
i 51

M

$2b i
s8/b i

s2@Vs~ i !2TVs8~ i !#/kT2%P~ i !

(
i 51

M

P~ i !
D , ~33!

where a prime indicates a partial derivative with respect to temperature. By expanding the terms in curly brackets in
sum abouti * we can write

S ] lnJ

]T D
lnS

5
pvs8

pvs
2

1

T
2

Vs~1!2TVs8~1!

kT2
1

b i*
s8

b i*
s 1

Vs~ i * !2TVs8~ i * !

kT2

1
1

(
i 51

M

P~ i !

(
i 51

M F 1

2kT2
~ i 2 i * !2S ]2

] i 2
@Vs~ i !2TVs8~ i !# D

i 5 i*
GP~ i !. ~34!

No linear term appears since with the use of previous approximations, the expectation value of (i 2 i * ) weighted byP( i ) is
zero.

The term involvingb i
s has been taken outside the sum since according to Eq.~15! we can write

1

b i
s

]b i
s

]T
5

pvs8

pvs
2

1

2T
1

1

Ai

]Ai

]T
, ~35!

and if we assume thatAi}( iv l)
2/3 for spherical clusters, then the final term in the last equation is simply 2v l8/(3v l) and the

whole expression is independent ofi .
The remaining expectation value is best dealt with by replacing the sums by integrals overi with limits 6`, and using the

approximate form forP( i ) used in Eq.~32!. The last term in Eq.~34! can then be written as

1

A2ps0kT2E2`

`

diF1

2
~ i 2 i * !2S ]2

] i 2
@Vs~ i !2TVs8~ i !# D

i 5 i*
GexpS 2

~ i 2 i * !2

2s0
2 D 5

1

2kT2
s0

2S ]2

] i 2
@Vs~ i !2TVs8~ i !# D

i 5 i*

,

~36!

where

1

s0
2

52pZ252
1

kTS ]2Vs~ i !

] i 2 D
i 5 i*

. ~37!

The last term in Eq.~34! is therefore

2
1

2TS ]2Vs~ i * !

] i 2 D 21S ]2

] i 2
@Vs~ i * !2TVs8~ i * !# D 52

1

2T
1

1

2

]

]T
lnS 2

]2Vs~ i * !

] i 2 D . ~38!

Note the shorthand denoting the evaluation of the derivatives at the critical size. The partial derivative with respect toT in the
last term is performed holdingi * constant.~The dimensionality of the argument of the logarithm can be taken care o
wished, by the insertion of an arbitrary constant.! Equation~34! then becomes

S ] lnJ

]T D
lnS

5
2pvs8

pvs
2

2

T
2

Vs~1!2TVs8~1!

kT2
1

2v l8

3v l
1

Vs~ i * !2TVs8~ i * !

kT2
1

1

2

]

]T
lnS 2

]2Vs~ i * !

] i 2 D . ~39!
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Now,

Vs~ i !2T
]Vs~ i !

]T
5F~ i !2T

]F~ i !

]T
2 i S ms2T

]ms

]T D , ~40!

and sinceQi5exp@2F(i)/kT# is proportional to the integral of exp@2Hc(i)/kT# over the phase space available to thei molecules
in the cluster~as determined by the cluster definition!, whereHc( i ) is the i -cluster Hamiltonian, we can deduce that

F~ i !2T
]F~ i !

]T
5

] lnQi

]@2~kT!21#
5

E )
j 51

i

d3xjd
3pjHc~ i !exp@2Hc~ i !/kT#

E )
j 51

i

d3xjd
3pjexp@2Hc~ i !/kT#

5 Ē~ i !, ~41!

where the integrals over the molecular positions and momenta are restricted by the cluster definition, andĒ( i ) is the mean
energy of ani -cluster in a canonical ensemble at temperatureT. The bar overE emphasizes that fluctuations in the clus
internal energy are likely to be substantial for such a small system.

Now we need the derivative ofms with respect toT in Eq. ~40!. ms is the molecular Gibbs free energy of a bulk vapor pha
at a pressurepvs and we can use the Gibbs-Duhem relation

sldT2v ldpvs1dms50, ~42!

wheresl andv l are the entropy and volume per molecule in the bulk liquid phase, to deduce that

ms2T
]ms

]T
5hl2Tsl2TS v l

dpvs

dT
2sl D5hl2Tv l pvs8 5el1v l~pvs2Tpvs8 !, ~43!

wherehl andel are the enthalpy and internal energy per molecule in the bulk liquid phase when in equilibrium with the
Therefore Eq.~39! becomes

S ] lnJ

]T D
lnS

5
2pvs8

pvs
2

2

T
2

Ex~1!

kT2
1

Ex~ i * !

kT2
2~ i * 21!

v l~pvs2Tpvs8 !

kT2
1

2v l8

3v l
1

1

2

]

]T
lnS 2

]2Vs~ i * !

] i 2 D , ~44!

where

Ex~ i !5 Ē~ i !2 iel ~45!

is the excess internal energy of ani -cluster. This is the mean energy of the cluster minus the energy thei molecules would
have, on average, in the bulk liquid phase at the same temperature and pressure of the vapor.

Using the Clausius-Clapeyron equationdpvs /dT5(hv2hl)/@(vv2v l)T# and pvsvv5kT, the first term on the right-hand
side of Eq.~44! can be shown to be equal to 2L@11v l /(vv2v l)#/(kT2), whereL5hv2hl is the latent heat per molecule, an
hv andvv are the enthalpy and volume per molecule in the bulk saturated vapor.

SinceĒ(1) is the mean energy of a single vapor molecule, we can also write

Ex~1!5 Ē~1!2el5hv2hl2pvs~vv2v l !5L2kT1pvsv l . ~46!

Equation~44! then can be written as

S ] lnJ

]T D
lnS

5
L

kT2S 11
2v l

vv2v l
D2

1

T
2

pvsv l

kT2
2~ i * 21!

v l~pvs2Tpvs8 !

kT2
1

Ex~ i * !

kT2
1

2v l8

3v l
1

1

2

]

]T
lnS 2

]2Vs~ i * !

] i 2 D . ~47!
a
d

us
f
f

Neglecting terms of orderv l /vv , and also the last two
logarithmic terms, which in most circumstances will be sm
compared to the others, Eq.~47! reduces finally to the secon
nucleation theorem:

S ] lnJ

]T D
lnS

5
1

kT2
@L2kT1Ex~ i * !#. ~48!
ll
Furthermore, it is possible to writeL2kT'ev2el5ex ,
which defines the mean excess internal energyex of the va-
por. The right-hand side of Eq.~48! then reduces to
@ex1Ex( i * )#/kT2.

The derivation of the theorem given here is more rigoro
than the earlier treatment@17#, and includes a number o
small terms in Eq.~47!. However, in the original version o
this theorem an additional term (L2kT)/kT2 appeared on
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the right-hand side of Eq.~48!. This arose because the the
modynamic treatment focused on the temperature de
dence of the cluster work of formation: the exponential fa
tor in the rate expression. The kinetic prefactor from class
nucleation theory was assumed, and this ultimately gave
to the additional term. This suggests that the classical kin
prefactor is incorrect, and this will be explored in the ne
section. The use of the classical prefactor to complete
derivation of the theorem meant that the excess internal
ergies extracted from experimental nucleation data in R
@17# are too small by approximately 20kT. A reanalysis of
the data is given in Sec. VI.

V. TESTS OF MODELS

A. Classical nucleation theory: The problem

The nucleation theorems can be used to test the inte
consistency of the classical theory of homogeneous nu
ation. This model was derived originally from thermod
namic arguments. The main assumption is that the equ
rium cluster populations are given by

ni ,cl
e 5n1

eexp$2@ecl~ i !2ecl~1!#/kT%, ~49!

where, for largei @10#,

ecl~ i !2ecl~1!5sAi2 ikT lnS. ~50!

ecl( i ) is a function that plays the role of the work of form
tion of an i -cluster. We comment on what it represents lat
The first term is the surface free energy of a spherical dro
with the bulk liquid density and bulk surface tensions. The
surface areaAi is taken to be equal toA0i 2/3 with
A05(36pv l

2)1/3. n1
e is the monomer population, given ap

proximately byn1
e5pvV/kT. Equation~49! is strictly valid

for S,1.
Using Eq.~49! we can go directly to the kinetic derivatio

of the nucleation rate, starting from Eq.~13! and proceeding
to Eq. ~25! with e( i ) replaced byecl( i ), or equivalently
Vs( i ) replaced bysAi . Inserting the classical expressio
into Eqs.~22!, ~25!, and~26! gives the classical critical siz
i cl* 5@2sA0 /(3kT lnS)#3 and classical nucleation rate

Jcl5S 2s

pmD 1/2

V
S2pvs

2 v l

~kT!2
expS 2

sA0i cl*
2/3

3kT D . ~51!

We now test the compatibility of the classical rate w
the first nucleation theorem by calculating the derivative
lnJcl with respect to lnS. We find

S ] lnJcl

] lnS D
T

522
1

3

sA0

kT

~22i cl*
2/3!

lnS
521 i cl* . ~52!

The classical theory is therefore inconsistent with the fi
nucleation theorem, given in Eq.~30!. It is well known that
the classical theory and the law of mass action are incom
ible and the failure to comply with the first nucleation the
rem is another reflection of this. Both problems can be c
rected by multiplyingJcl by a factor of 1/S @25#, and there
have been several attempts to justify this within the class
formalism.
n-
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Now we calculate the partial derivative of lnJcl with re-
spect toT:

S ] lnJcl

]T D
lnS

5
1

2s

ds

dT
12S L

kT2
2

1

TD 2~ i cl* lnS21!
d lnv l

dT

1
1

kT2S s2T
ds

dTDA0i cl*
2/3. ~53!

We must compare this with Eq.~47!. For the classical theory

]2Vs~ i !

] i 2
5

]2~sAi !

] i 2
52

2

9
sA0i 24/3. ~54!

Note that the last term on the right-hand side of Eq.~47! only
contributes, therefore, through the temperature depend
of the surface tension and liquid density. It is a small term,
suggested earlier, but we will retain it rather than use
approximate form of the second nucleation theorem, give
Eq. ~48!. However, we neglect all terms of orderv l /vv in
Eq. ~47!, to obtain

S ] lnJcl

]T D
lnS

5
1

2s

ds

dT
1S L

kT2
2

1

TD 1
d lnv l

dT
1

Ex
cl~ i cl* !

kT2
,

~55!

so the excess internal energy for the critical cluster in
model, as determined by the second nucleation theorem

Ex
cl~ i cl* !5S s2T

ds

dTDA0i cl*
2/32kT2

d lnv l

dT
i cl* lnS1~L2kT!.

~56!

Now, sincei cl* kT lnS5(2/3)sA0i cl*
2/3, the first two terms are

proportional to the surface area of the critical droplet.
these were the only terms, the internal energy of the dro
would be given by a term proportional to the volume (iel)
plus a term proportional to the surface area~the excess inter-
nal energy!, and this would be consistent with the underlyin
capillarity approximation. However, the last term in Eq.~56!
spoils this picture. Unfortunately, it is not sufficient simp
to neglect it in comparison with the other terms. It is a sym
tom of a deeper inconsistency within classical theory t
needs to be resolved.

The failure to comply with the two nucleation theorem
tell us that the classical theory is incomplete. The violatio
arise because Eq.~50! does not represent the work of forma
tion of a cluster correctly. The right-hand side of Eq.~50! is
in fact the work of formation of a classical droplet,which
has a fixed position in the system. We can identifyecl( i ) with
the work of formation of such a droplet and neglectecl(1) in
comparison. What we really need, however, is the free
ergy of a cluster which can appear anywhere in the syste
A symptom of this problem is that exp@2ecl( i )/kT# with
ecl( i ) given by the right-hand side of Eq.~50! is not propor-
tional toV as it should be. The missing term is the position
entropy~mixing entropy@18#! arising from the translation o
clusters throughout the system volume. Note this is not
same as introducing the translational kinetic energy of a c
ter into the excess free energy, which we shall comment
shortly.
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B. Repairing classical nucleation theory

Let us now return to Eq.~25! and see how we might b
able to derive the classical rate expression taking into
count positional entropy, and therefore repair classical nu
ation theory. The ingredient that has to be provided by so
physical model is the cluster work of formation:

e~ i !5Vs~ i !2 ikT lnS5F~ i !2 ims2 ikT lnS. ~57!

Now, sincems5gl , the Gibbs free energy per molecule
the bulk liquid phase when in equilibrium with the vapor, w
can writems5 f l1pvsv l , where f l is the molecular Helm-
holtz free energy in the liquid phase, so that

e~ i !5Fx~ i !2 ipvsv l2 ikT lnS'Fx~ i !2 ikT lnS, ~58!

where Fx( i ) is the excess Helmholtz free energy of t
i -cluster, defined by

Fx~ i !5F~ i !2 i f l . ~59!

Again, this excess quantity is the free energy of the clus
minus i times the free energy per molecule in the conden
phase.

We need to calculatee(1) for use in Eq.~25!. We write

e~1!5F~1!2ms2kT lnS, ~60!

whereF(1) is the Helmholtz free energy of a monomer
the volumeV, andms is the common chemical potential of
vapor and its condensate at equilibrium at a temperaturT.
From elementary statistical mechanics,F(1)52kT ln(Vg)
and ms52kT ln(g/rvs), where we have approximated th
monomer density in the saturated vapor by the molec
densityrvs . The factorg is equal to (2pmkT)3/2/h3, where
h is Planck’s constant. Then

exp@e~1!/kT#5
1

SrvsV
5

vv

SV
. ~61!

We shall now construct a repaired classical theory, star
by invoking the capillarity approximation, so that the exce
free energy for a spherical droplet with the bulk liquid de
sity and bulk surface tension is

Fx
cap~ i !5sAi2kT lnV/vc . ~62!

The first term, the classical excess free energy, has b
criticized on the grounds that contributions from clus
translational and rotation kinetic energy do not appear,
that the free energy does not represent all the degree
freedom available. However, it is theexcessfree energy that
is required, and it seems likely that there is no strong con
bution to Fx( i ) from molecular kinetic energy. The mo
ecules in the cluster probably have a similar mean kin
energy to that which they have in the bulk liquid. This po
has been debated for thirty years and has shrouded the a
cation of statistical mechanics to nucleation in controver
Perhaps the above argument clarifies the point: it is larg
the molecular potential energy that plays a role in nuclea
and not the kinetic energy terms.

A second criticism of the capillarity approximation is th
small molecular clusters are most unlikely to possess
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scaled-down properties of a spherical droplet of bulk liqu
However, we shall continue to pursue this model in the sp
of trying to repair classical theory.

The second term in Eq.~62! is the positional entropy term
due to the contribution to the partition function from tran
lated copies of every cluster. It was stated in Sec. II that
cluster free energy should be proportional to the volume. T
so-called scaling volumevc appears in Eq.~62! in order to
maintain the correct dimensions. It acts as a means of res
ing and counting translated states in the system. This ‘‘qu
tum’’ of volume has been discussed extensively elsewh
@18,19#. It appears in coarse-grained statistical models wh
the position of a mesoscale object is a degree of freed
droplet models are in this class, as are models of microem
sion behavior. Often the size of the scaling volume can
obtained intuitively@18#. Otherwise one needs to refer bac
to the statistical mechanics of the underlying system, defi
in the full phase space of all the degrees of freedom.

The work of formation based on the capillarity approx
mation is then, to a good approximation,

ecap~ i !5sA0i 2/32kT lnV/vc2 ikT lnS. ~63!

This form should not be expected to apply for smalli , and
when it is used, it will be assumed thati is large. The critical
size is found by solving]ecap( i * )/] i 50, which yields the
classical expressioni * 5 i cl* , if the scaling volumevc is in-
dependent ofi .

The nucleation rate is now obtained from Eqs.~25!, ~54!,
and ~61!:

Jcap5S 2s

pmD 1/2Spvsv l

kT

V

vc
expS 2

sA0i cl*
2/3

3kT D . ~64!

FIG. 2. The classical nucleation rate predictions divided by
experimental rates@15,29,31# are shown as open symbols for var
ous substances and temperatures. The filled symbols show the
ratio according to a revised model based on the capillarity appr
mation but satisfying the nucleation theorems. The enhancem
factor isvv /(Sv l).
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If vc did depend oni , the critical size of the revised mode
would not be the same as in the classical model. To a
approximation, however, we could ignore this influence a
simply evaluatevc in Eq. ~64! at the classical critical size.

We now can see that the classical rate expression,
~51!, can be obtained from a more rigorous statisti
mechanical–kinetic approach using the capillarity appro
mation, but only if we take the scaling volume in Eq.~64! to
be the molecular volume in the supersaturated vap
namely,vc5vv /S5kT/(Spvs).

However, the fact that the classical rate does not sat
the nucleation theorems warns us against this choice. Re
work has suggested that the scaling volume for a dro
model based on the capillarity approximation should be
the order of the molecular volume in the condensed ph
not in the supersaturated vapor@18#. Indeed Reisset al. @19#
have recently examined the scaling volume for a drop
model based on the capillarity approximation and propo
that for sizes relevant to nucleation, it takes the approxim
form vc5v l i

1/2.
We can examine the properties of the scaling volumevc

by requiring that Eq.~64! should satisfy the nucleation theo
rems. Repeating the steps of Eqs.~52!–~56! we find that ifvc
is independent of bothS and T, then both nucleation theo
rems are satisfied, with the excess cluster internal ene
being given by Eq.~56! without the unwanted final term. A
forecast, this extra term was a symptom of a major probl
which is now seen to be either the total neglect of positio
entropy in the classical cluster free energy, or equivalen
the use of an incorrect scaling volume. We conclude that
classical rate should be corrected by a factor ofvv /(Svc),
wherevc is a temperature- and supersaturation-independ
volume.

Several other nucleation models~not necessarily based o
the capillarity approximation! have suggested that the clas
cal rate should be corrected by a factorvv /(Sv l) @2,26,27#,
together with additional numerical factors and powers ofi * .
We see that this correction factor has a suitable form, a
from the minor temperature dependence ofv l , to ensure
compliance with the nucleation theorems. The scaling v
ume is then indeed proportional to the molecular volume
the liquid.

We examine the effect of the rate enhancement fa
vv /(Sv l) in Fig. 2 for various substances over typical expe
st
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mental temperature ranges. The open symbols denote th
tio of Jcl to experimentally measured nucleation rates. T
filled symbols denote the same ratio multiplied by the app
priate factor ofvv /(Sv l), which takes values between 104

and 106. Unfortunately, the revised model is no more su
cessful than the classical theory in collapsing all the d
onto a single line, or even in accounting for the experimen
temperature dependence. In several cases the predicted
has an improved temperature dependence, but this is not
versal, as demonstrated by the data forn-butanol. Neverthe-
less, the revised theory is better founded than class
theory, and presumably it is the capillarity approximati
that leads to the poor agreement.

C. Internally consistent classical theory

The nucleation theorems allow us also to study the
called internally consistent classical theory~ICCT! @28# for
which the nucleation rate is

JICCT5S 2s

pmD 1/2

V
Spvs

2 v l

~kT!2
exp~sA0 /kT!expS 2

sA0i cl*
2/3

3kT D .

~65!

We can derive this expression in two ways. The model w
originally developed by employing Eq.~49! with the terms in
the exponent given by

e ICCT~ i !2e ICCT~1!5~sA0i 2/32 ikT lnS!2~sA02kT lnS!.
~66!

This is motivated by a desire for an expression that gives
correct result ati 51 in Eq. ~49!: this is the internal consis
tency that the model is designed to achieve. The critical s
in the model is the same as for classical theory,i cl* , and the
supersaturation dependence of Eq.~65! satisfies the first
nucleation theorem. However, when we use the sec
nucleation theorem to extract the excess internal energy,
same problem we encountered in the classical theory
pears. We find that
S ] lnJICCT

]T D
lnS

5
1

2s

ds

dT
12S L

kT2
2

1

TD 2@~ i cl* 2 i cl*
1/3!lnS21#

d lnv l

dT
1

1

kT2S s2T
ds

dTDA0~ i cl*
2/321!, ~67!

so the excess internal energy for the ICCT is

Ex
ICCT~ i cl* !5S s2T

ds

dTDA0~ i cl*
2/321!2kT2

d lnv l

dT
~ i cl* 2 i cl*

1/3!lnS1~L2kT!

5S 12
T

s

ds

dT
2

2T

3

d lnv l

dT DsA0~ i cl*
2/321!1~L2kT!. ~68!
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The inconsistency this time is that the excess internal ene
might be expected to be proportional to (i cl*

2/321), bearing
in mind the form of Eq.~66!, but the last term in Eq.~69!
once again spoils matters.

We now derive the ICCT rate expression by a seco
route, taking into account positional entropy, and determ
the scaling volume, which is implicit in the model. We u
the following cluster work of formation

e ICCT
rev ~ i !5sA0~ i 2/321!2~ i 21!kT lnS2kT lnV/vc .

~70!

Equation~25! now leads, together with Eqs.~54! and~61!, to
the following nucleation rate:

J5S 2s

pmD 1/2

V
pvsv l

kT

V

vc
exp~sA0 /kT!expS 2

sA0i cl*
2/3

3kT D .

~71!

The ICCT expression in Eq.~65! is consistent with the
choice of scaling volumevc5vv /S in Eq. ~71!, as before.
This is not surprising, since the ICCT result is simply t
classical theory expression multiplied by a particular fac
chosen to correct a certain apparent inconsistency within
model. In fact, it is debatable whether the ICCT correct
true inconsistency, since the problem only arises if the c
illarity approximation used in Eq.~50! is forced to apply for
i 51, which is clearly unphysical. Equation~49! is actually
consistent by construction.

What we have shown is that the rate expressions for c
sical theory and the ICCT can be derived from a clus
model with a scaling volume equal to the volume per m
ecule in the supersaturated vapor. However, there is e
indication that the scaling volume for a model based on
capillarity approximation should be virtually independent
S and T, and perhaps of the order of the volume per m
ecule in the liquid state. This emerges since the models
to comply with the nucleation theorems.

VI. DATA ANALYSIS

Finally, the nucleation theorems given in Eqs.~30! and
~48! will be used to extract the excess internal energy
critical clusters from experimental nucleation data. This p
cedure was used in Ref.@17# but using the earlier version o
the second theorem, in which an additional (L2kT)/kT2

term appeared on the right-hand side. As we have seen in
paper, this was due to the use of a classical kinetic prefa
in the derivation. The excess internal energies reported
@17# are therefore too small by approximately 20kT.

Data for water@15# and n-butanol @29# have therefore
been reanalyzed and the resulting plots ofEx( i * ) against
critical size i * are given in Fig. 3. Data forn-heptane and
n-octane, andn-nonane andn-decane@30# are also analyzed
and the excess internal energies are shown in Figs. 4 an
respectively. Data forn-pentanol@31# and dibutylphthalate
~DBP! @32# have also been examined, and the excess inte
energies are shown in Fig. 6. The curves in the figures s
values ofExc( i )5(s2Tds/dT)Ai based on the capillarity
approximation.

Errors in the data points are small along the size axis,
are possibly more significant along the energy axis, a
~69!
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evident in the scatter of values in some cases. The deviat
between data points and the capillarity model predictions
in some cases not too large, but more often they are subs
tial. This is simply a reflection of the failure of the capillarit
approximation to describe small clusters accurately. Stud
of molecular cluster structure, using reasonable intermole
lar potentials and a suitable cluster definition, are planned
order to try to account for the observed excess internal en
gies. Such studies are likely to be more straightforward th
studies of the free energy.

VII. CONCLUSIONS

The first part of this paper gave a derivation of the tw
nucleation theorems using a combination of statistical m
chanics and a kinetic approach. The results confirm previ

FIG. 3. Dimensionless excess internal energyEx /kT0 for clus-
ters ofi molecules of the substances water andn-butanol, extracted
from experimental data@15,29# using the nucleation theorems. Th
excess internal energies according to the capillarity approxima
Exc are also shown as curves. The reference temperature
T05273.15 K.

FIG. 4. Same as Fig. 3, but for the substancesn-heptane and
n-octane@30#.
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derivations from continuum and small system thermodyna
ics. These theorems relate the temperature and supersa
tion dependence of the nucleation rate to properties of
critical molecular cluster, which is the size that has the ma
mum cluster work of formation, and which is loosely the si
equally likely to grow or decay.

The derivation described here yields the temperature
supersaturation dependence of the nucleation rate dire
The approximations that have been made in the deriva
are not unusual and the results seem to be soundly base
particular, the results are valid for any choice of cluster d
nition used in the statistical mechanics. On the other ha
the suitability of the definition will determine the degree
which critical cluster properties calculated from models w
correspond to the properties of real critical clusters. T
choice is crucial to the success of the theory. A good defi
tion must include all molecular configurations in phase sp
that correspond to the relatively long-lived states that t
part in cluster population dynamics, and exclude all ephe
eral states. Physical intuition, and ultimately comparis

FIG. 5. Same as Fig. 3, but for the substancesn-nonane and
n-decane@30#.

FIG. 6. Same as Fig. 3, but for the substancesn-pentanol@31#
and dibutylphthalate~DBP! @32#.
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with experimental data, should guide the choice of clus
definition used in calculations.

The theorems were derived previously by studying o
the properties of the critical cluster work of formation, and
classical prefactor was assumed. The version of the sec
nucleation theorem derived here differs from the earlier v
sion and this implies that the classical kinetic prefactor
incorrect.

To reinforce this point, it has been shown that the clas
cal nucleation rate, and its so-called internally consistent
vision, fail to comply with the nucleation theorems. The e
cess internal energy derived from the model nucleation
expression does not have the expected form. The reaso
this failure is the following. An approximate calculation o
the grand partition function of a vapor within statistical m
chanics requires the free energy of a single cluster tha
able to occupy any position within the system. It turns o
though, that classical theory is based on the properties
spherical droplet with its center fixed at one position. T
excess cluster free energy, within the capillarity approxim
tion, is proportional to the droplet surface: it is independe
of the system volumeV. However, the enumeration of a
positions of a free cluster within the volume must introdu
a lnV term into the free energy. On dimensional groundsV
appears together with a scaling volumevc , which is in effect
the fundamental cell volume in the positional phase spa
The existence of this positional, or mixing entropy term,
implicit in the present derivation of the nucleation theorem

It is possible to derive the classical rate expression from
cluster work of formation that includes positional entropy
choosing the scaling volume to be the molecular volume
the supersaturated vaporvv /S. The same conclusion can b
reached for the so-called internally consistent class
theory. However, compliance with the theorems requires
scaling volume to be independent of supersaturation
temperature, at least to a first approximation, and so
justification of the classical formula is not possible. Fro
other work @18,19# it would appear that the molecular vo
ume in the condensatev l is a natural scaling volume fo
models based on the capillarity approximation.

The population ofi -clusters in subsaturated vapors
given by

ni
e5n1

eexp$2@e~ i !2e~1!#/kT% ~72!

with e( i )5F( i )2 i (ms1kT lnS) for all i . This expression is
mathematically consistent ati 51 and in agreement with the
law of mass action sinceS}n1

e and soni
e}(n1

e) i . The free
energyF( i ) contains the term2kT ln(V/vc) for iÞ1, with
vc independent ofS and T. e(1) is simply 2kT ln(SV/vv).
These logarithmic terms reflect the freedom for droplets
nucleate anywhere in the system. Ifvc is given by v l , as
seems likely, then the classical nucleation rate is correcte
a factorvv /(Sv l). This factor is strongly temperature depe
dent and of order 1042106 numerically. It has appeared sev
eral times before in theories of nucleation@2,26,27#.

The revised rate may be more acceptable on form
grounds, but it still relies on the capillarity approximatio
namely, that the cluster density and surface properties
those of the bulk condensate. For this reason, it should no
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expected to be an accurate model. However, the rev
theory rests on a much firmer basis in statistical mecha
than the original classical theory. Disagreement with exp
ment is likely to be due to the physical assumptions m
rather than any mathematical inconsistencies. More real
models might be used within the same framework to ma
-

s

ed
cs
i-
e

tic

progress towards successful nucleation rate predictions.
Finally, the nucleation theorems have been used to

cluster excess internal energies against cluster size fo
number of substances, using experimental nucleation
data. This information will provide useful points of compar
son with microscopic models of clusters.
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