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Surface tension and nucleation rate of phases of a charged colloidal suspension

Michael Knott* and Ian J. Ford
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

~Received 16 January 2002; published 7 June 2002!

The square gradient approximation is used to calculate the surface tension between two phases of differing
density in a charged colloidal suspension, and the results are compared with experimental and theoretical
evidence from various colloidal systems. The nucleation rate of a colloidal liquid cluster from a metastable
colloidal gas is estimated using a version of classical nucleation theory. We explain in terms of nucleation
phenomena the recently described ‘‘Swiss cheese effect,’’ which involves the formation of crystals from an
initial disordered state, followed by the formation of disordered regions within the crystals and at the interfaces
between them. We argue that this sequence of events shows evidence both of homogeneous and of heteroge-
neous nucleation. The experimental prominence of homogeneous nucleation suggests that metastability is very
important in colloidal systems, and therefore that the consideration of nucleation rates is essential to the study
of phase behavior in such systems. We also predict that the occurrence or nonoccurrence of phase separation
into a dense and a rarefied phase is governed by the ratio of the macroion charge to the macroion radius.
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I. INTRODUCTION

A charged colloidal suspension appears to be an exce
example of the way in which the behavior of a physic
system can depend more strongly on generic considera
than on the specific nature of the system. Experimental
servations on these systems at low added salt have prod
evidence of coexistence between regions of greatly differ
macroion density@1–9#. This behavior is strongly reminis
cent of the solid- and liquid-gas phase separations that
observed in molecular matter. It occurs in a manner such
it cannot be explained by means of the attractive van
Waals interactions between colloidal particles. Therefore
can be argued that the phenomenon requires the modi
tion, elaboration, or replacement of the traditional theo
@10,11# of colloidal stability, which regards the electrostat
part of the interaction in a charged colloidal suspension a
sum of repulsive effective pairwise interactions between
colloidal particles.

A variety of theoretical approaches have been propo
@12–18# to produce qualitative predictions of phase sepa
tion. It appears@15# that the observed coexistence behavio
the result of a competition between the electrostatic com
nent of the free energy, which is cohesive, and the counte
translational entropy, which acts to stabilize the syst
against phase separation. This interpretation provides a g
analogy @16# with the situation in molecular fluids@19#,
where the cohesive effect is provided by the attractive
der Waals interaction between molecules, while the stab
ing effect is the result of the translational entropy of t
molecules. However, neither the theoretical treatments@20#
nor the very existence of the phase separation phenom
@21,22# are universally accepted, although the latter is s
ported by recent computer simulations@23,24#.

Even under conditions where the most thermodynamic
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favorable state for a system is a mixture of phases, a pre
isting homogeneous fluid may persist temporarily. This
because of the free energy barrier associated with the for
tion of a phase interface: before a large region of the n
phase can exist, a small droplet must nucleate, and this d
let will have a large surface area relative to its volume. A
result, the free energy cost of forming the surface of a sm
droplet outweighs the free energy gain of forming the bulk
the droplet, and the droplet is unstable with respect to
preexisting phase, which we therefore term metastable@25#.

In this paper, we apply the principles of nucleation@26# to
phase transitions in charged colloidal suspensions. There
a number of reasons for doing this. Experiments by Yosh
et al. @8,9# have investigated the evolution of a suspens
from an initial homogeneous state to a phase separated
state. It should be possible to explain the resulting ‘‘Sw
cheese’’ structure in terms of surface free energies and nu
ation; it is clear, then, that the thermodynamic effects
phase boundaries in these systems can be observed an
therefore, worthy of theoretical investigation. There is a
the possibility that insights gained from the consideration
nucleation events in colloidal systems could benefit the st
of nucleation processes, in general, and of nucleation p
cesses in molecular systems, in particular. It has often b
pointed out that colloidal crystals provide a good model s
tem for atomic matter@27#, as similar processes take place
larger length scales and over longer time scales. Nuclea
in colloidal systems happens more slowly and on a lar
length scale than in molecular systems, where the fast rat
the phase transition and the unobservable size of the cri
cluster make the phenomenon very difficult to investig
accurately, either by experiment or by theory. Another pro
lem with the study of homogeneous nucleation in molecu
systems is that it may be preempted by heterogeneous n
ation, the process by which the new phase nucleates aro
foreign bodies or on the walls of the container. The larg
length scales in colloidal systems should make hetero
neous nucleation less of a problem: sufficiently large imp
rities are unlikely to be present in the bulk of a suspensi
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while the container walls may or may not act as sites
heterogeneous nucleation~depending on whether the free e
ergy of the interface between the nucleating phase and
wall is smaller or larger than that of the interface between
metastable phase and the nucleating phase!.

Section II of this paper summarizes a recent theoret
treatment of colloidal phase coexistence by the present
thors @16# and introduces an important generalization.
Secs. III–V we use a simple approximate method to cal
late the surface tension of an interface in a charged collo
suspension under conditions of zero added salt. After an
troduction to classical nucleation theory and the derivation
the free energy appropriate to the system under considera
~Sec. VI!, we investigate the nucleation rate of a liquid clu
ter from a metastable vapor in a colloidal system~Sec. VII!.
Finally, we discuss the Swiss cheese effect in the contex
nucleation theory in Sec. VIII.

We use SI electromagnetic units throughout.

II. PHASE COEXISTENCE IN CHARGED COLLOIDAL
SUSPENSIONS

We model a system containing a large numberNM of
identical spherical colloidal particles~macroions! of radiusa
and constant surface chargeZe, wheree is the elementary
charge anduZu@1. These are balanced byNc5uZuNM point
counterions~microions! of chargezce, where uzcu51. The
system contains no added salt. We take the macroions t
negative and the counterions to be positive (Z,0 andzc5
11), but it makes no difference to the results if the signs
interchanged. The solvent in which the ions are suspen
has constant temperatureT and volumeV, and is regarded a
a continuum of permittivitye5e re0, which is unaffected by
the presence of ions. Here,e0 is the permittivity of the
vacuum ande r is the relative permittivity; we regard th
solvent as being water, which has a relative permittivity
around 80.

Correlations between microions are ignored: they resp
to a mean field rather than interacting directly with one a
other. The behavior of the macroions is regarded as adia
cally separated from that of the much smaller counterio
that is, the counterions are allowed to form their equilibriu
density profile about a ‘‘fixed’’ system of macroions, an
then the free energy of the system is found as a function
the macroion density. These simplifications permit the use
a mean field Poisson-Boltzmann description of the coun
ion distribution. This means that the counterions are mode
as a continuous fluid of charge~of varying density! rather
than as a collection of discrete particles.

Since the volume and temperature of the model sys
are fixed, the appropriate thermodynamic potential to
minimized is the Helmholtz free energy. If we ignore th
small contribution from the colloidal particles in the absen
of charge, the calculated Helmholtz free energyf per macro-
ion contains@16# two macroion density dependent termsD f 0
and f el . The first is the macroion density dependent part
the contribution from the counterion ideal gas in the abse
of charge,D f 052uZukBT ln(v21), wherekB is the Boltz-
mann constant andv is a dimensionless volume per macr
06140
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ion, in units of the volume (4/3)pa3 of one macroion (v is
equal to 1/h, whereh is the colloid volume fraction!. The
electrostatic contributionf el to the free energy per macroio
can be written as a sum of two componentsf pair and f sel f ,
where

f pair5
Z2e2

8pea H Fsinhka

ka
1

Fs

11ka S coshka2
sinhka

ka D G2

SY

1
4 lnv

9pk2a
(

mÞn
E

0

`

I ~k!dk
sinkaSmn

kaSmn
J ~1!

and

f sel f5
Z2e2

8pea F 1

11ka
1

1

3 S ka

11kaD 2

Fs
21

e2ka

11ka S sinhka

ka

2coshkaD ~Fs21!22
1

3 S ka ln v
9 D 2

1
4 lnv

9pk2a
E

0

`

I ~k!dkG . ~2!

Here, Fs is a dimensionless potential at the surface o
macroion in units ofZe/4pea(11ka),

Fs5
~11ka!~e2ka1SY!

~11ka!e2ka1~12ka cothka!SY
, ~3!

while I (k) is defined as

I ~k!5H S 7

2v~ka!2
2

ln v
9 D ~sinka2ka coska!2

1sinka~sinka2ka coska!J F lnS 11
k2

k2 D 2
k2

k2G .

~4!

SY is a sum over Yukawa potentials, defined bySY

5(nÞme2kaSmn/Smn , whereSmn is a dimensionless separa
tion between macroionsm andn in units ofa. The parameter
k is the inverse Debye screening length, defined byk2

5zc
2e2n̄c /ekBT, wheren̄c is the mean counterion density i

the suspension. Each region of the system should be ch
neutral, soka varies, through its dependence onn̄c , as a
function of the dimensionless volumev,

ka5S 3uZue2

4pekBTa

1

v21D 1/2

. ~5!

If a face centered cubic structure is used, the relation
tween v and the dimensionless nearest neighbor macro
separationS ~in units of a) is S5(4A2pv/3)1/3.

The ideal gas termD f 0 decreases monotonically with in
creasingv, while f el increases@16#. The graph off 5D f 0
1 f el as a function ofv may contain an upward bulge~where
the second derivative is negative!; as in a molecular fluid,
1-2
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SURFACE TENSION AND NUCLEATION RATE OF . . . PHYSICAL REVIEW E 65 061401
this translates into a van der Waals loop in thepV diagram,
indicating coexistence between a dense and a rarefied p

At constantv, it is observed that

f ~CuZu,Ca!5C f~ uZu,a!, ~6!

whereC is a constant. This is made plausible by the cons
eration of the expressions forf. The electrostatic termsf pair
and f sel f both consist largely~though not entirely! of a func-
tion of ka multiplied by Z2/a. Equation~5! shows that the
parameterka can be expressed, at constantv, as a function
of uZu/a. Meanwhile,D f 0 is equal to a constant~at constant
v) multiplied by uZu. The fact that Eq.~6! appears to hold,
according to our numerical results, suggests that all the c
tributions to the electrostatic free energy, written in units
Z2/a, could be expressed~at constantv) as functions ofka,
even if this is not apparent from the form in which they a
written. The relation makes the various components off, if
they are expressed in units ofZ2e2/8pea, dependent only on
a parameterz5uZu/109a, and not onZ anda separately. The
dependence onuZu anda reduces toz dependence.

Figures 1 and 2 show the free energyf per macroion and
pressurep52] f /]v, respectively, as functions ofv, for
various values ofz, given in units of nm21. These graphs
show evidence of phase coexistence: the binodal is ma
b, the spinodals, and the critical pointc. The value ofz at
the critical point iszc521.41 nm21; at each value of the
macroion radiusa, phase coexistence between a dense an
rarefied region emerges as the charge is increased abo
critical valueZc5zca. The occurrence or nonoccurrence
phase separation at a givenZ anda is governed by the value
of z. This conclusion is similar, although not identical, to th
of Ise et al. @28#, who suggested that the macroion surfa
charge density~proportional toZ/a2) is the important factor.

III. THE SQUARE GRADIENT APPROXIMATION

We now outline a method by which the free energy cos
forming a surface between two phases of a fluid can be

FIG. 1. The free energyf per macroion in units ofZ2e2/8pea
for various values ofz. The binodal is markedb, the spinodals, and
the critical pointc.
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culated, if we know the characteristics of the fluid and t
phases, using implicitly the ideas of classical density fu
tional theory with the square gradient approximation@29,30#.
Along with more sophisticated density functional theori
@31#, this has often been applied to molecular systems,
recently it has been applied by Brader and Evans@32# to a
colloid-polymer mixture.

Consider a system containing two phasesa andb ~with
volumesVa and Vb and free energy densitiesrF

a and rF
b)

separated by an interface. The system has total Helmh
free energyF; we define the excess free energyFx as the
difference between the free energy of a system and the v
which the free energy would take if the system contained
two homogeneous phases and an idealized, infinitesim
thin boundary with no free energy of its own:

Fx5F2rF
aVa2rF

bVb. ~7!

If we use the equimolar dividing surface, thenFx5sAs ,
whereAs is the area of the surface. The surface tensions can
be found by

s5E
2`

`

rF
x ~z!dz, ~8!

whererF
x (z) is the density in space of the excess Helmho

free energy andz is the distance measured perpendicular
the surface, which is considered here to be planar and to
homogeneous except in thez direction.

The idea of density functional theory, as applied to th
problem, is to choose a physically plausible form for t
excess free energy densityrF

x @n(z)# as a functional of the
particle density profilen(z) and then to minimize the tota
excess free energy densityFx5As*2`

` rF
x @n(z)#dz, for given

a and b, with respect ton(z) to find the physical particle
density profilenphys(z) between phasesa andb. The physi-

FIG. 2. ThepV diagram showing van der Waals loops for va
ous values ofz. The pressurep has units of 3Z2e2/32p2ea4. The
binodal is markedb, the spinodals, and the critical pointc.
1-3
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MICHAEL KNOTT AND IAN J. FORD PHYSICAL REVIEW E65 061401
cal excess free energy density will then berF
x @nphys(z)#. The

accuracy of the results depends, of course, on a reason
expression for the excess free energy density having b
chosen.

Here, the main aim is to calculate the surface tens
rather than the details of the interfacial structure. A first a
proximation forrF

x (z), known as the local density or poin
thermodynamic approximation, is that the free energy d
sity rF(z) at a point in the interfacial region where th
particle density isn8 is the same as that in a homogeneo
phase of densityn8. This amounts to assuming that loc
inhomogeneities have no effect on the free energy, whic
therefore a function only of the local density. It leads to

rF
x ~z!5rF

an~z!2rF
a,b , ~9!

whererF
an(z) is the free energy density calculated by an

lytic extension into the metastable region of the free ene
curve in the stable regions~a function only of the local den
sity!, andrF

a,b is the free energy density resulting from th
mixture of homogeneous statesa andb, ignoring the effects
of the interface. Figure 3 illustrates the situation on t
rF(n) diagram:rF

an is on the upward bulge, whilerF
a,b is on

the tie line. Unfortunately, minimization ofFx would pro-
duce a step function interface~for which the local density
approximation gives zero excess free energy, since the w
of the interface can be taken to zero whilerF

x remains finite
despite the fact thatu]n/]zu→`, asrF

x does not depend on
the gradient!. The square gradient approximation adds a te
proportional to the square of the density gradient:

FIG. 3. Illustration of generic free energy densityrF against
particle densityn, illustrating components of the free energy dens
in the local density and square gradient approximations. The lo
tion of the equilibrium liquid is markedA, and that of the equilib-
rium vapor C. B indicates the metastable fluid~with free energy
calculated by analytic extension into the metastable region of
free energy curve in the stable regions!, while D denotes the phas
separated state~ignoring the effects of the interface in the calcul
tion of the free energy!.
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rF
x ~z!5rF

an~z!2rF
a,b1C~n!S ]n

]zD 2

. ~10!

The extra term is to be regarded as the next in an expan
in terms of the derivatives of the density; Eq.~10! is thus
strictly valid only for small gradients. The parameterC
should be independent of]n/]z and higher derivatives.

In this approximation, the total free energy dens
rF(z)5rF

x (z)1rF
a,b is given by

rF~z!5rF
an~z!1C~n!S ]n

]zD 2

. ~11!

Consequently, ifrF(z) andrF
an(z) can be calculated, we ca

find C(n) using

C~n!5
rF~n!2rF

an~n!

~]n/]z!2
. ~12!

From the Euler-Lagrange equation that minimizes the in
gral in Eq. ~8!, whererF

x (z) is given by Eq.~10!, we find
@30# that

s52E
na

nb

@C~n!~rF
an2rF

a,b!#1/2dn. ~13!

The value of Eq.~13! is that it permits calculation of the
surface tension without explicit calculation or considerati
of the particle density profile, or even of the density gradie
in the interface@30#. All we need is the coefficientC(n) in
the gradient expansion~10!.

IV. THE SQUARE GRADIENT APPROXIMATION
APPLIED TO A COLLOIDAL SUSPENSION

In order to calculate the surface tension in a colloid
suspension, we first calculateC(n) at different densities us
ing Eq.~12!. At each densityn8, this requires the calculation
of rF(n8) andrF

an(n8). The analytic free energy densityrF
an

is simply the free energy density in a homogeneous phas
particle densityn8; therefore, it can be evaluated using Eq
~1! and~2!. The procedure for the evaluation of the total fr
energyrF is more complicated: Eqs.~1! and ~2! must be
applied in a modified way.

The results produced by these equations depend bot
the microion density through the parameterka ~and hence
on the macroion density because of the requirement
charge neutrality! and on the macroion separationsSmn . In
the calculation ofrF

an , we approximate the macroion distr
bution by the simple cubic structure illustrated in the cro
section in Fig. 4, and the separations between nearest ne
bors, next nearest neighbors, and so on can easily be re
to ka using Eq.~5!. All macroions are regarded as equiv
lent, in the sense that the macroion density is a cons
throughout the region. The procedure for calculating
electrostatic free energy per macroion is to choose one m
roion ~markedm) and sum over the contributions from it
neighbors. Every macroion in the phase can then be rega
as equivalent to this ‘‘test’’ macroion.
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SURFACE TENSION AND NUCLEATION RATE OF . . . PHYSICAL REVIEW E 65 061401
For the inhomogeneous system, we consider the lat
shown in the cross section in Fig. 5, with the particle se
ration varying only in the direction notated asz, wherez is to
be interpreted as perpendicular to the surface. This is
intended to be a realistic representation of the interface:
simply a device to enable us to evaluate the effect of a d
sity gradient on the free energy of the test macroionm. The
macroion separations are determined by considering e
macroionn to lie at the center of a cuboidal cell, and ass
ciating a densitynn51/Vn with the macroion, whereVn is
the volume of the cell. Let the lengths of those sides of c
n that lie parallel toz be equal tosn . Other sides of the cel
have lengthsm , wheresm is the side length of the cubic ce
around the test macroionm. The density atn can then be
expressed as

nn5
1

sm
2 sn

. ~14!

The density gradient enters the model as a constanK.
This does not mean that the density gradient is cons
throughout the interface, only that it is possible to defin

FIG. 4. Schematic of the macroion configuration used in
calculation of the electrostatic free energy densityrF

an in a homo-
geneous phase.

FIG. 5. Schematic of the macroion configuration used in
calculation of the electrostatic free energy densityrF of a system
with a density gradient. Dashed lines indicate the boundaries o
cells around some of the macroions.
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density gradient that is valid in the vicinity of macroionm.
The density as a function of distancez perpendicular to the
interface is thus given by

n~z!5nn1K~z2zn!, ~15!

wherezn is the value ofz at some macroionn. This density
has a physical meaning only at the points occupied by
macroions, and we write

nq5nn1K~zq2zn!, ~16!

wherezq is the z coordinate of macroionq. Recalling that
nq51/(sm

2 sq), we rewrite Eq.~16! to give

nn1K~zq2zn!2
1

sm
2 sq

50. ~17!

If q and n are nearest neighbors in thez direction, their
separation can be found using Eq.~17!. There are two pos-
sible cases here. Ifq5n11, that iszq.zn , corresponding to
nq.nn for K.0, we havezn112zn5(sn1sn11)/2, which
leads tosn1152(zn112zn)2sn . Then Eq. ~17! is trans-
formed into

nn1Kzn,n112
1

sm
2 ~2zn,n112sn!

50, ~18!

wherezn,n115zn112zn . This leads on to a quadratic equ
tion for zn,n11 in terms of the densities and the gradient:

zn,n11
2 1S nn

K
2

nm
2/3

2nn
D zn,n112

nm
2/3

K
50. ~19!

Here, we have used Eq.~14! to find sm51/nm
1/3 and sn

5nm
2/3/nn . The physically significant solution of Eq.~19! is

zn,n115
1

2 H nm
2/3

2nn
2

nn

K
1AS nm

2/3

2nn
2

nn

K D 2

1
4nm

2/3

K J .

~20!

The second case isq5n21, that iszq,zn , which corre-
sponds tonq,nn for K.0. Then zn,n2152(sn1sn21)/2
andsn21522zn,n212sn . The quadratic equation inzn,n21
is

zn,n21
2 1S nn

K
1

nm
2/3

2nn
D zn,n211

nm
2/3

K
50, ~21!

the physically significant solution of which is

zn,n2152
1

2 H nm
2/3

2nn
1

nn

K
2AS nm

2/3

2nn
1

nn

K D 2

2
4nm

2/3

K J .

~22!

We can calculate the macroion separations that sat
Eqs. ~14! and ~16! by starting from the ‘‘test’’ macroionm
and moving outward, repeatedly applying Eq.~20! or Eq.
~22! depending on the direction in which we are travelin
This allows us to find macroion separationsSmn for the in-
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MICHAEL KNOTT AND IAN J. FORD PHYSICAL REVIEW E65 061401
homogeneous system, and these separations can be us
Eqs. ~1! and ~2!, which involve sums over macroionsn, to
estimate the electrostatic free energy per macroion in an
homogeneous system. The local microion density, which
required for the calculation ofka, is assumed to take th
same value as it would in a homogeneous system of the s
macroion density. One consequence of this assumptio
that the only change that the inhomogeneous system req
in the calculation off el is in the macroion separationsSmn .
As the density gradients are required to be small for
square gradient approximation to be valid, we take the id
gas contributionD f 0 to the free energy to have the sam
value in the inhomogeneous system as in a homogen
system of the same macroion density.

The difference that appears in the numerator of Eq.~12!
for C can be expressed as a difference in electrostatic
energy contributions:

rF~n!2rF
an~n!5n@ f el~n,K !2 f el

an~n!#, ~23!

wheref el is the electrostatic free energy per macroion in
inhomogeneous system, calculated using Eqs.~1! and ~2! as
detailed above, andf el

an is the electrostatic free energy p
macroion in a homogeneous system at the same density
cording to the square gradient approximation, the calcula
value ofC should be a function of the densityn, but should
not depend on the density gradient]n/]z at a given value of
n. Of course, this is only true for small]n/]z, as the square
gradient approximation is not expected to be valid in a s
tem with a large density gradient.

Having calculatedC numerically as a function of density
we can insert it into Eq.~13!; the integral can then be pe
formed numerically in order to evaluate the surface tens
This procedure also requires the calculation ofrF

a,b , which
can be found using the geometry of Fig. 3. Since the state
the bulge and the state on the tie line have the same ma
ion density, the ideal gas contributions to the free energy
the two states can be regarded as equal. Therefore,

rF
an2rF

a,b5nF f el
an~n!2S nb2n

nb2naD f el
a 2S n2na

nb2naD f el
b G ,

~24!

where f el
a and f el

b are the electrostatic free energies per m
roion in homogeneous systems of densitiesna andnb.

V. RESULTS FOR THE SURFACE TENSION

We find that the following relation holds for the surfac
tensions calculated under conditions of zero added salt:

s~CuZu,Ca!5
1

C
s~ uZu,a!, ~25!

whereC is an arbitrary constant. This means thats, if ex-
pressed in units proportional touZu/a2, depends only on the
ratio z5uZu/109a, and not onuZu or a individually. Figure 6
shows the calculated surface tensions, as a function of vol-
ume fractionh, for a planar interface between the metasta
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vapor and a phase whose density is equal to that of the e
librium liquid. The surface tension is expressed in units
uZukBT/1000a2. The domain of the calculations spans t
metastable region between the binodal~low h) and the spin-
odal ~high h); the surface tension of the interface betwe
the liquid and the equilibrium vapor is at the binodal end
the lines. Because of Eq.~6!, the end points of the lines
depend only onz.

The dependence ofs on h is weak; the vapor is always
much less dense than the liquid, so that small changes in
vapor density have little effect on the difference in dens
between the two phases, and therefore little effect on
nature of the interface. Figure 6 makes it clear that, at fix
colloid radius, the surface tension~expressed in these units!
increases with chargeZ, and therefore diminishes as the crit
cal point is approached, and thats increases with decreasin
macroion radius at fixed charge.

If the macroions have a radius of 50 nm, the actual val
of the surface tension are of the order of 1025 J m22, which
is several orders of magnitude smaller than the surface
sions encountered in molecular fluids (;1022 J m22), but
closer to, although slightly larger than, figures measured
calculated for colloid-polymer mixtures @32,33#
(;1026–1025 J m22). Experimental and theoretical resul
@34# for solid-liquid interfaces in hard sphere systems su
gest a figure of around 1027 J m22 for hard spheres of di-
ameter 100 nm. Larsen and Grier@6# used their observation
of metastable colloidal crystallites to estimate a lower lim
of ;1028 J m22 for charged colloidal particles of radiu
326 nm. Our results forz522.0 nm21 suggest a figure of
around 531027 J m22 for macroions of this radius, so th
Larsen and Grier experiments may have been underta
very close to the critical point (z,22 nm21).

VI. HOMOGENEOUS NUCLEATION THEORY

A. Introduction

In the remainder of the paper, we investigate phase m
stability and nucleation in a charged colloidal suspensi

FIG. 6. Surface tensions, expressed in units ofuZukBT/1000a2,
as a function of the volume fractionh of the metastable vapor, fo
various values ofz under conditions of zero added salt. The ran
of values ofh spans the binodal-spinodal range.
1-6



ou

th
In
l-

o-

th
se
o

at
n

or
ri
y

as
ry

th
e

a-
en
te

cle

e,

a

a

a

a-

ow
of

he

n
and

iven

of
y
of

-

y

t
o-

cal
en-

let
r

SURFACE TENSION AND NUCLEATION RATE OF . . . PHYSICAL REVIEW E 65 061401
First, we shall introduce the classical theory of homogene
nucleation. Consider a small liquidlike cluster containingi
particles, surrounded by its vapor. We wish to consider
work DW required to form such a cluster from the vapor.
a system whose constraints~constant temperature and vo
ume, and no exchange of matter with the surroundings! are
such as to make the Helmholtz free energyF a minimum at
equilibrium, the workDW required to cause a reversible pr
cess to happen is equal to the changeDF in the Helmholtz
free energy during the process. With a view to applying
results to the colloidal system discussed in the previous
tions, we shall consider nucleation under these external c
straints, and soDW5DF. This makes the assumption th
the states before and after the formation of the cluster ca
joined by a reversible path.

We make the assumptions of classical nucleation the
that is, the cluster can be described as a very small sphe
droplet of liquid of radiusR, which behaves in the same wa
as a macroscopic spherical drop in the sense that it h
well-defined surface whose area, because of the geomet
the sphere, is proportional toi 2/3. The surface tensions and
density nl are regarded as having the same values as
would in a macroscopic quantity of liquid under the sam
conditions. If the cluster is sufficiently small that its form
tion from the vapor produces a negligible change in the d
sity of the vapor, the free energy cost of forming the clus
from the vapor can be expressed as

DF5D f bi 1 f si
2/3, ~26!

whereD f b is the free energy cost of transferring one parti
from the vapor to the liquid phase, andf s is a parameter
proportional to the free energy cost of creating a unit area
the surface.f s is positive, while, if the vapor is metastabl
D f b will be negative.

The shape ofDF( i ) is shown in Fig. 7; it possesses
peak at a critical cluster sizei * . Clusters larger thani * will
tend to grow, but a cluster can only reach this size by me
of random fluctuations: clusters smaller thani * are unstable
with respect to the vapor. The formation probability of

FIG. 7. Illustration of the dependence on the cluster sizei of the
free energy costDF of forming a generic liquid cluster from the
metastable vapor.
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critical cluster is proportional to the exponential of the neg
tive of the work of formationDF* of the critical cluster, and
since a cluster that exceeds the critical size will tend to gr
into a macroscopic droplet, we consider the probability
formation of a droplet also to be proportional to this. T
Becker-Döring equations relate the nucleation rateJ ~the rate
of formation of droplets! to the formation probability@35#,
giving, to a good approximation,

J5J0exp~2DF* /kBT!, ~27!

where the prefactorJ0 emerges from a detailed consideratio
of the condensation rate of monomers on to a cluster
their evaporation rate from a cluster.J0 is only weakly de-
pendent on the cluster size, for a given substance under g
conditions.

B. The free energy of formation of a liquid cluster:
Classical theory

Now we wish to derive the Helmholtz free energy cost
forming a liquid cluster from the vapor, in order to justif
Eq. ~26!. Figure 8 illustrates schematically the process
formation of an arbitrary droplet or cluster~not necessarily
the critical cluster!. The initial state consists of a homoge
neous metastable vapor ofN particles in volumeV. The final
state comprises a spherical liquid cluster of radiusR and
volume Vl , containingNl5 i particles at constant densit
i /Vl , and a vapor of volumeVv , containingNv particles at
constant densitynv5Nv /Vv . This is the Gibbsian view of
the structure of a cluster. The temperatureT, the total number
of particles N, and the total volumeV are held constan
throughout the process. Using the Euler relation of therm
dynamics and the definitionF5U2TS, the free energyFh
of the initial homogeneous state can be written as

Fh52phV1mhN, ~28!

whereph andmh are, respectively, the pressure and chemi
potential in the homogeneous metastable vapor. The free
ergy after the formation of the cluster isF5Fl1Fv1Fs ,
where the bulk free energy of the liquid cluster isFl5
2plVl1m lNl (pl is the pressure in the liquid andm l is the

FIG. 8. Schematic of the process of formation of a liquid drop
of radiusR, volumeVl , and densityNl /Vl from a metastable vapo
of volumeV and densityN/V.
1-7
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MICHAEL KNOTT AND IAN J. FORD PHYSICAL REVIEW E65 061401
chemical potential!, and that of the remaining vapor isFv
52pvVv1mvNv (pv andmv are the pressure and chemic
potential in the vapor!. The free energyFs of the ~theoreti-
cally infinitesimally thin! interface is given by

Fs5sAs1msNs , ~29!

wheres is the surface tension,As is the surface area of th
cluster,ms is the chemical potential in the surface, andNs is
the number of particles associated with the surface. ThesAs
term has been added to the energy, and therefore to
Helmholtz free energy, in place of a2pV term. The excess
value Fx of the free energy after the cluster has formed
Fs . If we choose the interface to correspond to the equimo
dividing surface~which is defined byNl1Nv5N!, the ex-
cess number of particlesNs is zero andFs5sAs . This al-
lows the parameterf s , which was introduced in Eq.~26!, to
be expressed as

f s5~36p!1/3
s

nl
2/3

. ~30!

Here, of course, we have made the classical assumption
the surface tension is independent of the size of the clus

Sinced(DF)50 at i 5 i * , the critical cluster is in equi-
librium with its vapor. This is an unstable equilibrium: th
system is unstable against arbitrarily small changes in
size of the cluster. We now consider the chemical poten
when the cluster is at the critical size. Using the facts t
Vl1Vv5V andNl1Nv5N, we can write the total free en
ergy of a system containing an arbitrary cluster as

F52~pl2pv!Vl1~m l2mv!Nl2pvV1mvN1sAs .
~31!

Requiring the unstable equilibrium condition]F/]Nl50 to
hold, we find that the critical cluster corresponds to t
equality of the chemical potentials:m l* 5mv* . ~However, the
pressures inside and outside the droplet are not equal.!

Subtracting Eq.~28! from Eq.~31!, the free energy cost o
forming an arbitrary spherical droplet can be expressed

DF52~pl2pv!Vl1~m l2mv!Nl2~pv2ph!V

1~mv2mh!N1sAs . ~32!

The metastable vapor can reasonably be treated as an
gas, both before and after the formation of the cluster. T
we can use the characteristics of the ideal gas to write

mv2mh5kBT lnS pv

ph
D5kBT lnS 11

pv2ph

ph
D . ~33!

Provided the cluster is small enough that the perturbation
the vapor due to its formation are small~that is,pv'ph), we
can take only the first term in the expansion of ln(11x) in
powers ofx, to give

mv2mh'kBTS pv2ph

ph
D5~pv2ph!

V

N
, ~34!
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where the second step follows from the ideal gas equatio
state. Thus, the third and fourth terms of Eq.~32! cancel one
another, and we are left with

DF52~pl2pv!Vl1~m l2mv!Nl1sAs . ~35!

The pressurepl and chemical potentialm l of the liquid clus-
ter will not have the same values as the pressure and ch
cal potential in the bulk equilibrium liquid~the liquid that
would eventually appear in the final, mixed equilibriu
state!, which we will denote bypl

eq and m l
eq, respectively.

However, a relation between the two states can be found
order to eliminate explicit reference topl andm l . We rewrite
Eq. ~35! as

DF52~pl2pl
eq!Vl2~pl

eq2pv!Vl1~m l2mv!Nl1sAs .
~36!

Thermodynamic integration of the Gibbs-Duhem relation b
tween the bulk equilibrium liquid state and the state of t
liquid in the cluster, under the constraints that the tempe
ture T and volume per particle,v l , are held constant~the
latter constraint implies that the liquid is incompressib
which is clearly an approximation!, leads to the relation

pl2pl
eq5nl~m l2m l

eq!, ~37!

where we have used the fact thatv l51/nl . Inserting Eq.~37!
into Eq. ~36!, recalling thatnlVl5Nl , and making the as-
sumption that the vapor is perturbed only slightly by t
formation of the cluster (pv'ph andmv'mh!, we find

DF52~pl
eq2ph!Vl1~m l

eq2mh!Nl1sAs . ~38!

Using the relationf 5m2pv, which results from the defini-
tions of the Helmholtz free energy and the chemical pot
tial, Eq. ~38! can be rewritten as

DF5@ f l
eq2 f h1ph~v l2vh!#Nl1sAs . ~39!

Equation~39!, together with Eq.~30!, justifies the form for
DF given in Eq.~26!, with

D f b5 f l
eq2 f h1ph~v l2vh!. ~40!

Figure 9 illustrates on anf (v) diagram the physical plau
sibility of the above expression forD f b . The line BD is
tangential to the analytic free energy curve atvh . The length
of line AE is equal tof l

eq2 f h , while the length ofDE is
equal to2ph(v l2vh), sinceph is 2] f /]v evaluated atB.
So

D f b5uAEu2uDEu. ~41!

If an upward bulge, indicating phase coexistence, is pres
D f b will clearly be negative; its magnitude will be the leng
of the lineAD. The maximum value of the magnitude ofD f b
corresponds to the locally most negative value for] f /]v ~the
local maximum ofp), which is located at the spinodal. AsB
approachesC ~the binodal!, D f b will diminish; whenB and
C coincide (vh5vv

eq), the tangentsBD andAC will coincide
1-8
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SURFACE TENSION AND NUCLEATION RATE OF . . . PHYSICAL REVIEW E 65 061401
andD f b50. Forvh.vv
eq, D f b is positive, corresponding to

a single phase equilibrium state. Finally,BD and AC will
coincide also at the critical point, where the analytic fr
energy curve betweenA andC becomes a straight line.D f b
is zero here, and becomes negative on the other side o
critical point, where the equilibrium state is a single phas

Having justified the form of Eq.~26!, we can use it to
calculate the critical cluster size and work of formati
within the classical approximation. The critical cluster is l
cated at the maximum ofDF( i ), so (](DF)/] i ) i 5 i* 50,
which leads to

i * 52
8

27S f s

D f b
D 3

~42!

~recall thatD f b is negative if the vapor is metastable! and
therefore

DF* 5
4

27

f s
3

~D f b!2
52

1

2
D f bi * . ~43!

Inserting Eq.~30! produces

i * 52
32p

3nl
2 S s

D f b
D 3

~44!

and

DF* 5
16p

3nl
2

s3

~D f b!2
. ~45!

C. The link with other formulations

Equation~38! is not the most common expression used
the literature to calculate the critical work of formation, a
it is important to relate it to the more usual expressio
Consider the form of Eq.~38! when the homogeneous met

FIG. 9. Illustration of generic free energyf per particle against
the volumev per particle, illustrating the qualitative correctness
Eq. ~40! for D f b . See text for details.
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stable vapor is close to the binodal (ph'pv
eq andmh'mv

eq).
Sincepl

eq5pv
eq andm l

eq5mv
eq, we have

DF52~pv
eq2ph!Vl1~mv

eq2mh!Nl1sAs . ~46!

Of course, bothpv
eq2ph andmv

eq2mh go to zero at the bin-
odal. Using the characteristics of an ideal gas, we can rew
Eq. ~46! as

DF

kBT
52~nv

eq2nh!Vl1 lnS nv
eq

nh
DNl1sAs

5F2S nv
eq2nh

nh
Dnh1 lnS 11

nv
eq2nh

nh
Dnl GVl1sAs ~47!

~where in the second stage we have used the fact thaNl
5nlVl). For small x, ln(11x)'x, so near the binodal Eq
~47! becomes

DF

kBT
5S nv

eq2nh

nh
D ~2nh1nl !Vl1sAs ; ~48!

since nl@nh , this leads to the disappearance of the te
derived from thepV term in Eq.~46!, and

DF'~mv
eq2mh!Nl1sAs . ~49!

Expressions of the form~49! for the work of formation
are often given in the literature@26,36#. It is important to
remember that this expression requires approximations
hold only close to the binodal; thus it can be thermodyna
cally justified only when the metastable vapor is close to
binodal. Deeper into the coexistence region, it leads to
nificant, though not catastrophic, errors in calculations fo
colloidal system; however, the errors are generally assum
to be insignificant for simple molecular fluids, becausepV
terms are usually small in such condensed phases.

D. Modification of classical nucleation theory

Examination of the classical expressions fori * andDF*
given in Eq.~43! reveals a problem: since bothD f b and i *
are nonzero at the spinodal,DF* will also be nonzero here
which disagrees with results from density functional theo
@37,38#. Intuitively, also,DF* should go to zero at the spin
odal, since the vapor at this point should be unstable aga
arbitrarily small density fluctuations. It is not surprising th
classical nucleation theory is unreliable, since a liquid clus
containing only a small number of particles does not rea
resemble a macroscopic droplet with a well-defined surfa
We shall apply a simple phenomenological correction giv
by McGraw and Laaksonen@39# and Talanquer@40#. This
assumes that, whilei * continues to be expressed by Eq.~42!,
DF* contains a correction term that depends only on
temperature:

DF* 52
1

2
D f bi * 1D~T!. ~50!
1-9
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MICHAEL KNOTT AND IAN J. FORD PHYSICAL REVIEW E65 061401
The correction termD(T) is evaluated by requiring tha
DF* vanishes at the spinodal, which gives

D~T!5
1

2
D f b

spi * sp, ~51!

whereD f b
sp andi * sp are equal toD f b and the critical cluster

size, respectively, evaluated at the spinodal. Thus, the
rected expression for the critical work of formation is

DF* 52
1

2
~D f bi * 2D f b

spi * sp!. ~52!

In the following section we shall use Eq.~52! to calculate
some nucleation rates in colloidal systems.

VII. NUCLEATION IN COLLOIDAL SYSTEMS

When the dependence of the surface tension on the
sities of the phases is known, we can calculate the crit
size of a liquidlike cluster using equation Eq.~42! and the
work of formation of the critical cluster using Eq.~52!. Fig-
ures 10 and 11 show the variation of the critical size a
function of the colloid volume fractionh ~and therefore of
‘‘distance’’ into the metastable region! for macroions of ra-
dius a550 nm and various surface charges. Figure 11
magnification of Fig. 10. The critical size approaches infin
at the binodal~the smallh ends of the lines!, and falls rap-
idly as we move further into the metastable region towa
the spinodal~the largeh ends of the lines!. The critical size
also increases as the macroion charge decreases toward
critical point (uZu51070 fora550 nm). This is in line with
the results of a recent investigation of the critical size at
approach to the spinodal in molecular systems@41#.

Figures 12 and 13 show the barrier to nucleation of
critical cluster for macroions of radius 50 nm~Fig. 13 is a
magnification of Fig. 12!. The barrier approaches infinity a
the binodal, and falls steeply as we move further into

FIG. 10. Critical cluster sizei * as a function of the volume
fraction h of the metastable vapor, for colloidal particles of radi
a550 nm and various chargesZ, under conditions of zero adde
salt.
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metastable region, reaching zero at the spinodal. Of cou
we have modified classical nucleation theory to ensure
the barrier is zero at the spinodal; otherwise it could be of
order 102–103 kBT.

The calculated homogeneous nucleation rate~density of
critical clusters formed per second! is illustrated for macro-
ions of radius 50 nm in Fig. 14. This uses the nucleation r
from Eq. ~27!, where DF* is given by Eq.~52! and the
prefactor J0 is estimated from classical nucleation theo
@42#:

J05A2s

pm

nh
2

nl
. ~53!

Here,nh andnl are the number densities of particles in t
homogeneous metastable vapor and the liquid state, res

FIG. 11. Critical cluster sizei * as a function of the volume
fraction of the metastable vapor, for colloidal particles of radiusa
550 nm, under conditions of zero added salt. Magnification of F
10.

FIG. 12. Nucleation barrierDF* of the critical cluster as a
function of the volume fractionh of the metastable vapor, for col
loidal particles of radiusa550 nm and various chargesZ, under
conditions of zero added salt.
1-10
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SURFACE TENSION AND NUCLEATION RATE OF . . . PHYSICAL REVIEW E 65 061401
tively, and the massm of a particle is calculated by assumin
the colloidal particles to have the same density as water. L
the work of formation, the homogeneous nucleation rate
pends very steeply on the location within the metastable
gion of the system prior to phase separation. In most of
metastable region, the nucleation rate is so small that
process would not occur on an observable time scale.
only in a small region that nucleation rates are in the vicin
of ln J50, allowing the progress of the nucleation process
be observed as it was~for crystals nucleating from a meta
stable fluid and voids nucleating from a metastable crys!
by Yoshidaet al. @8,9#.

For uZu51100 the critical cluster size when lnJ'0 is of
the order of 103, which is large enough for the assumptio
underlying classical nucleation theory to be reasonable.

FIG. 13. Nucleation barrierDF* of the critical cluster as a
function of the volume fraction of the metastable vapor, for coll
dal particles of radiusa550 nm, under conditions of zero adde
salt. Magnification of Fig. 12.

FIG. 14. Natural logarithm lnJ of the nucleation rate as a func
tion of volume fraction, for colloidal particles of radiusa
550 nm and various chargesZ, under conditions of zero adde
salt.J has units of m23 s21.
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uZu51200, this critical cluster size is of the order of 50, a
classical nucleation theory begins to appear implausible
the macroion surface charge were larger than this, th
would be no reason to think that an observed homogene
nucleation process could be described using the class
theory, since it would involve critical clusters too small to b
regarded as liquidlike droplets with surfaces.

The upper limit of the nucleation rate would be limited b
the rate at which colloidal particles can diffuse, and wou
not be well described by classical nucleation theory.

VIII. THE SWISS CHEESE EFFECT

Finally, we shall discuss the Swiss cheese effect@8,9# ~see
Fig. 15! with reference to nucleation theory. This phenom
enon involves the formation of space-filling crystals from
initial disordered~liquidlike! state on a time scale of second
to minutes, followed by the formation of gaslike regions,
a time scale of minutes to hours, both within the crystals a
at the interfaces between them.

We hypothesize that the initial disordered state is me
stable with respect to a solidlike state, which is itself me
stable with respect to the final phase separated state com
ing a solidlike phase of slightly higher density together w
a gaslike phase. The initial state lies in a region of the ph
diagram where the most thermodynamically favorable sin
phase is solidlike, and this solidlike phase can nucleate fa
quickly ~on a time scale of seconds to minutes!: the initial
liquidlike phase and the nucleating solidlike phase ha
similar densities and therefore the surface tension of th
interface is small. The fact that the metastable crystall
appear throughout the bulk of the suspension demonstr
that the process of homogeneous nucleation is taking pla

The nucleation of the gaslike regions within and betwe
the metastable crystals is a much slower process, becaus
large difference in the densities of the two phases leads
relatively large surface tension, and therefore to a large
rier to nucleation. There is evidence of both homogene

FIG. 15. The Swiss cheese effect discovered by Yoshidaet al.
White represents solidlike~ordered! regions, while black represent
liquidlike and gaslike~disordered! regions. A solidlike phase nucle
ates~a! from the initial liquidlike state on a time scale of seconds
minutes, to produce space-filling crystals~b!. Then gaslike regions
form within the crystals and at their interfaces~c!, on a time scale of
minutes to hours.
1-11
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MICHAEL KNOTT AND IAN J. FORD PHYSICAL REVIEW E65 061401
~in the interiors of the crystals! and heterogeneous nucleatio
here: the heterogeneous nucleation takes place at the i
faces between crystals and is the cause of the gaps that
between them. This process happens because particles
interface are already thermodynamically ‘‘disadvantaged’’
the presence of the interface, and so the additional free
ergy required to form the surface of a gaslike region
smaller than it is in the bulk. However, the heterogene
nucleation is not so much more favored that it preempts
mogeneous nucleation and prevents it from being obser
if this were the case, the ‘‘cheese’’ would have no holes in

There is another mechanism that could contribute to
appearance of gaslike regions at the interfaces of the crys
small bubbles of the gaslike phase, formed by homogene
nucleation, could diffuse to an interface from the body o
crystal. This process is thermodynamically favorable sinc
reduces the surface area of the crystal. However, we ca
attribute the formation of the gaslike regions at the interfa
entirely to this mechanism; if homogeneous nucleation
curs in the interior of the crystals, heterogeneous nuclea
at the interfaces seems inevitable, since it is by definitio
faster process than homogeneous nucleation.

It can be seen from Fig. 14 that the rate of homogene
nucleation is vanishingly small in most of the metasta
region, so that in practice the process would only be
served in a small part of the region. This is not just a feat
of colloidal systems: it results from the exponential dep
dence of the nucleation rate on the work of formation of
critical cluster, and applies also to simple fluids. However
simple fluids the process of homogeneous nucleation is
ally preempted by heterogeneous nucleation~because the
roughness on the molecular scale of the surfaces of imp
ties and of the walls of the container provides highly adv
tageous sites for heterogeneous nucleation!, so that a meta-
stable state is unlikely to endure for long. It was argued
the beginning of this paper that this should not be the c
for colloidal systems, and the experimental results
Yoshidaet al. support this conclusion.

Unless heterogeneous nucleation were much faster
homogeneous nucleation in a particular colloidal suspens
metastable states in most of the metastable region would
all intents and purposes, be stable: phase separation w
not be seen to occur on any experimentally accessible
scale. Thus, consideration of surfaces and nonequilibr
processes would be essential to the study of these syst
Even an exact calculation of the equilibrium phase diagr
would be an incomplete description of the phase behav
only a calculation of the nucleation rates could tell us wh
phase separated states would be observed in practice. T
conclusions are also relevant to computer simulations
most parts of the metastable region, simulations would h
to run for an extremely long time before evidence of pha
separation could be detected.

However, the experiments of Yoshidaet al. suggest a
mechanism by which phase separation could occur eve
direct homogeneous nucleation were too slow a process t
observable, even if there were no possibility of hetero
neous nucleation at the walls of the container. If the sys
is in a region of the phase diagram where the most sta
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state of homogeneous density is solidlike rather than dis
dered, an initially disordered state will tend to change to
solidlike state, and this will happen much more easily th
the phase separation into a dense and a rarefied phase
competing crystals that result from this first nucleation p
cess will leave interfaces at which heterogeneous nuclea
might take place, although in this particular experimen
system the process does not appear to be significantly fa
than homogeneous nucleation.

IX. CONCLUSIONS

Our results predict that the Helmholtz free energy o
charged colloidal suspension containing univalent microio
and no added salt, expressed in dimensionless units, dep
on the ratio of the macroion charge to the macroion rad
and not on the charge or radius separately. This simplifies
description of the phase behavior, and implies that the oc
rence or nonoccurrence of phase separation into a dense
a rarefied phase is governed by this ratio.

This paper has presented the first theoretical estimate
surface tension in charged colloidal suspensions, calcul
using density functional theory in the square gradient
proximation. The calculated values are of a reasonable o
of magnitude, and approach zero, as expected, as the cr
macroion surface charge is approached. Knowledge of
surface tension allows the characteristics of the critical cl
ter, and therefore also the rate of homogeneous nucleatio
be calculated, at least within classical nucleation theory. T
results emphasize the fact that the homogeneous nucle
rate depends very steeply on the conditions, so that, in la
parts of the metastable region, homogeneous nuclea
would not be observed on any practical time scale. Phys
arguments and experimental evidence suggest that hete
neous nucleation is not significantly faster than homo
neous nucleation in many colloidal systems; in this ca
phase separation might never occur in large parts of
metastable region, and the calculation of nucleation ra
would then be as important as equilibrium calculations in
theoretical prediction of phase coexistence.

The Swiss cheese effect observed by Yoshidaet al. @9#
can be explained qualitatively in the context of nucleati
theory. The initial formation of competing metastable cry
tals from a metastable liquidlike phase is evidence of hom
geneous nucleation, while the subsequent formation of g
like regions shows signs of both homogeneous a
heterogeneous nucleation. The possibility of heterogene
nucleation at the boundaries of metastable crystals sugge
mechanism by which phase separated states that are ina
sible by homogeneous nucleation might nonetheless be
served, even in the absence of other heterogeneous n
ation sites.
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