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Surface tension and nucleation rate of phases of a charged colloidal suspension
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The square gradient approximation is used to calculate the surface tension between two phases of differing
density in a charged colloidal suspension, and the results are compared with experimental and theoretical
evidence from various colloidal systems. The nucleation rate of a colloidal liquid cluster from a metastable
colloidal gas is estimated using a version of classical nucleation theory. We explain in terms of nucleation
phenomena the recently described “Swiss cheese effect,” which involves the formation of crystals from an
initial disordered state, followed by the formation of disordered regions within the crystals and at the interfaces
between them. We argue that this sequence of events shows evidence both of homogeneous and of heteroge-
neous nucleation. The experimental prominence of homogeneous nucleation suggests that metastability is very
important in colloidal systems, and therefore that the consideration of nucleation rates is essential to the study
of phase behavior in such systems. We also predict that the occurrence or nonoccurrence of phase separation
into a dense and a rarefied phase is governed by the ratio of the macroion charge to the macroion radius.
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I. INTRODUCTION favorable state for a system is a mixture of phases, a preex-
isting homogeneous fluid may persist temporarily. This is
A charged colloidal suspension appears to be an excellefiiecause of the free energy barrier associated with the forma-
example of the way in which the behavior of a physicaltion of a phase interface: before a large region of the new
system can depend more strongly on generic considerationghase can exist, a small droplet must nucleate, and this drop-
than on the specific nature of the system. Experimental oblet will have a large surface area relative to its volume. As a
servations on these systems at low added salt have produceskult, the free energy cost of forming the surface of a small
evidence of coexistence between regions of greatly differinglroplet outweighs the free energy gain of forming the bulk of
macroion densityf1-9]. This behavior is strongly reminis- the droplet, and the droplet is unstable with respect to the
cent of the solid- and liquid-gas phase separations that afereexisting phase, which we therefore term metastgag
observed in molecular matter. It occurs in a manner such that In this paper, we apply the principles of nucleatj@6] to
it cannot be explained by means of the attractive van dephase transitions in charged colloidal suspensions. There are
Waals interactions between colloidal particles. Therefore, i number of reasons for doing this. Experiments by Yoshida
can be argued that the phenomenon requires the modificat al. [8,9] have investigated the evolution of a suspension
tion, elaboration, or replacement of the traditional theoryfrom an initial homogeneous state to a phase separated final
[10,17 of colloidal stability, which regards the electrostatic state. It should be possible to explain the resulting “Swiss
part of the interaction in a charged colloidal suspension as eheese” structure in terms of surface free energies and nucle-
sum of repulsive effective pairwise interactions between thetion; it is clear, then, that the thermodynamic effects of
colloidal particles. phase boundaries in these systems can be observed and are,
A variety of theoretical approaches have been proposetherefore, worthy of theoretical investigation. There is also
[12-18 to produce qualitative predictions of phase separaihe possibility that insights gained from the consideration of
tion. It appear$15] that the observed coexistence behavior isnucleation events in colloidal systems could benefit the study
the result of a competition between the electrostatic compoef nucleation processes, in general, and of nucleation pro-
nent of the free energy, which is cohesive, and the counteriooesses in molecular systems, in particular. It has often been
translational entropy, which acts to stabilize the systenpointed out that colloidal crystals provide a good model sys-
against phase separation. This interpretation provides a goadm for atomic mattef27], as similar processes take place at
analogy [16] with the situation in molecular fluid$19], larger length scales and over longer time scales. Nucleation
where the cohesive effect is provided by the attractive varin colloidal systems happens more slowly and on a larger
der Waals interaction between molecules, while the stabiliziength scale than in molecular systems, where the fast rate of
ing effect is the result of the translational entropy of thethe phase transition and the unobservable size of the critical
molecules. However, neither the theoretical treatm@?@  cluster make the phenomenon very difficult to investigate
nor the very existence of the phase separation phenomenacurately, either by experiment or by theory. Another prob-
[21,22 are universally accepted, although the latter is supiem with the study of homogeneous nucleation in molecular
ported by recent computer simulatiof3,24]. systems is that it may be preempted by heterogeneous nucle-
Even under conditions where the most thermodynamicallyation, the process by which the new phase nucleates around
foreign bodies or on the walls of the container. The larger
length scales in colloidal systems should make heteroge-
*Present address: Department of Biochemistry, Faculty of Medineous nucleation less of a problem: sufficiently large impu-
cine, University of Toronto, Toronto, Ontario, Canada M5S 1A8. rities are unlikely to be present in the bulk of a suspension,
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while the container walls may or may not act as sites forion, in units of the volume (4/3}a® of one macroion ¢ is
heterogeneous nucleati¢depending on whether the free en- equal to 14, where 5 is the colloid volume fraction The
ergy of the interface between the nucleating phase and thelectrostatic contributioff,, to the free energy per macroion
wall is smaller or larger than that of the interface between thean be written as a sum of two componefits;, andf s,

metastable phase and the nucleating phase where
Section Il of this paper summarizes a recent theoretical
treatment of colloidal phase coexistence by the present au- Z%e? | [sinhka (O sinhka) |2 v
thors [16] and introduces an important generalization. In fpair=g 1|z T 15 .a| cOSM@~ — || =
Secs. IlI-V we use a simple approximate method to calcu-
late the surface tension of an interface in a charged colloidal 41np o sinkaS,,
suspension under conditions of zero added salt. After an in- + > E f I(k)dkk—] (2)
troduction to classical nucleation theory and the derivation of 9mk“a m#n Jo aSnn
the free energy appropriate to the system under consideration
(Sec. V), we investigate the nucleation rate of a liquid clus- and
ter from a metastable vapor in a colloidal systéec. VII). 7262 1 1/ xa \2 e-*a [sinhka
Finally, we discuss the Swiss cheese effect in the context off__ = + = §_|.
nucleation theory in Sec. VIIL. 8mea|l+ka 3|1+«ka 1+xal xa
We use Sl electromagnetic units throughout. 1/ kalny |2
—coshka | (®g—1)2— 3173 )
Il. PHASE COEXISTENCE IN CHARGED COLLOIDAL
SUSPENSIONS 4Inv (=
o + J I(k)dk]. 2
We model a system containing a large numbgj of 9mk“alo

identical spherical colloidal particlésnacroion$ of radiusa
and constant surface charge, wheree is the elementary Here, @ is a dimensionless potential at the surface of a
charge andz|>1. These are balanced Iy.=|Z|Ny, point ~macroion in units oZe/4rea(1+ «a),
counterions(microions of chargez.e, where|z.|=1. The kAl <Y

; . (1+ka)(e *@+3Y)
system contains no added salt. We take the macroions to be O = ,
negative and the counterions to be positive<(0 andz.= (1+ ka)e “@+(1— kacothka)S Y
+1), but it makes no difference to the results if the signs are . )
interchanged. The solvent in which the ions are suspende@hile (k) is defined as
has constant temperatufeand volumeV, and is regarded as

o

()

7 Inv|
— — | (sinka—kacoska)?

a continuum of permittivitye= €, €5, which is unaffected by
2v(ka)? 9

the presence of ions. Here, is the permittivity of the
vacuum ande, is the relative permittivity; we regard the
solvent as being water, which has a relative permittivity of . . K?
around 80. +sinka(sinka— kacoska)] - Pl

Correlations between microions are ignored: they respond
to a mean field rather than interacting directly with one an- (4)
other. The behavior of the macroions is regarded as adiabatj:, . . : v
cally separated from that of the much smaller counterions; 1S a_,iuST over Yukawa .poten.uals, .deﬂned By
that is, the counterions are allowed to form their equiIibrium_:E”;tme n/Sm”'_ whereSm,] IS a_dlmensmnless separa-
density profile about a “fixed” system of macroions, and “OF‘ betwe.en macroions andn in gnlts ofa. The pgrameter
then the free energy of the system is found as a function of IS the inverse Debye screening length, defined Wy
the macroion density. These simplifications permit the use of* Ze€’n¢/ekgT, wheren, is the mean counterion density in
a mean field Poisson-Boltzmann description of the counterthe suspension. Each region of the system should be charge
ion distribution. This means that the counterions are modeledleutral, soxa varies, through its dependence op, as a
as a continuous fluid of chargef varying density rather  function of the dimensionless volume
than as a collection of discrete particles.

Since the volume and temperature of the model system 3zl 1 \'?
are fixed, the appropriate thermodynamic potential to be 4mekgTav—1
minimized is the Helmholtz free energy. If we ignore the
small contribution from the colloidal particles in the absencelf a face centered cubic structure is used, the relation be-
of charge, the calculated Helmholtz free enefger macro- tweenv and the dimensionless nearest neighbor macroion
ion containg 16] two macroion density dependent terthf,  separatiorss (in units ofa) is S= (4\2mvI3)'5.
andfg . The first is the macroion density dependent part of The ideal gas termA f, decreases monotonically with in-
the contribution from the counterion ideal gas in the absencereasingv, while f.; increased16]. The graph off =Af,
of charge,Afo=—|Z|kgT In(v—1), wherekg is the Boltz- +f, as a function oy may contain an upward bulda/here
mann constant and is a dimensionless volume per macro- the second derivative is negatjyes in a molecular fluid,

K2

In 1+F

Ka=

©)
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FIG. 1. The free energ§ per macroion in units oZ2e?/8mea
for various values of. The binodal is marked, the spinodas, and 4

the critical pointc. FIG. 2. ThepV diagram showing van der Waals loops for vari-

) ) . ) ous values of. The pressur@ has units of Z?e?/32%ea®. The
this translates into a van der Waals loop in ¢ diagram,  pinodal is marked, the spinodak, and the critical point.
indicating coexistence between a dense and a rarefied phase.
At constanty, it is observed that culated, if we know the characteristics of the fluid and the
phases, using implicitly the ideas of classical density func-
f(C|z|,.Ca)=Cf(|Z].a), ®  tional theory with the square gradient approximafia8,30.
. o . . Along with more sophisticated density functional theories
whereC is a constant. This is made plausible by the c0n3|dI31], this has often been applied to molecular systems, and

eration of the expressions férThe electrostatic termf, ,; recently it has been applied by Brader and EVi8#] to a
andf .. s both consist largelythough not entirelyof a func- colloid-polymer mixture.

tion of ka multiplied by Z?/a. Equation(5) shows that the Consider a system containing two phaseand 8 (with
parameterka can be expressed, at constantas a function |, mesve and V# and free energy densitigs? and p@)

of |Z|/a. Meanwhile,Afy is equal to a constartet constant g o ated by an interface. The system has total Helmholtz
v) multiplied by [Z|. The fact that Eq(6) appears to hold, fqe energyF: we define the excess free ener§y as the
according to our numerical results, suggests that all the COMgifference be’tween the free energy of a system and the value
tributions to the electrostatic free energy, written in units of\yhich the free energy would take if the system contained the
Z*/a, could be expresset constant) as functions ofa, 4 homogeneous phases and an idealized, infinitesimally
even if this is not apparent from the form in which they arey. boundary with no free energy of its own:

written. The relation makes the various components, dff

they are expressed in units Bfe?/8mea, dependent only on EX= F — pay@— pBy8 @)

a parametet =|Z|/10°a, and not orZ anda separately. The PRV PR
dependence ofZ| anda reduces ta/ dependence.

Figures 1 and 2 show the free eneffgyer macroion and
pressurep= —df/dv, respectively, as functions af, for
various values of, given in units of nm?*. These graphs
show evidence of phase coexistence: the binodal is marked o
b, the spinodak, and the critical point. The value of{ at a=f pr(2)dz, (8)
the critical point is{,=21.41 nm!; at each value of the “
macroion radiug, phase coexistence between a dense and a < o
rarefied region emerges as the charge is increased aboveVqerepr(2) is the density in space of the excess Helmholtz

critical valueZ.= {.a. The occurrence or nonoccurrence of ’e€ energy and is the distance measured perpendicular to
phase separation at a givranda is governed by the value the surface, which is considered here to be planar and to be
of £. This conclusion is similar, although not identical, to thatNomMogeneous except in taadirection. _ _

of Ise et al [28], who suggested that the macroion surface 1h€ idea of density functional theory, as applied to this

charge densityproportional toZ/a?) is the important factor, Problem, is to choose a physically plausible form for the
excess free energy densipt[n(z)] as a functional of the

particle density profilen(z) and then to minimize the total

excess free energy densif=A.[ " pr[Nn(z)]dz, for given
We now outline a method by which the free energy cost ofe and 8, with respect ton(z) to find the physical particle

forming a surface between two phases of a fluid can be cadensity profilen,,,{z) between phases and 3. The physi-

If we use the equimolar dividing surface, thé&f=cA,,
whereA is the area of the surface. The surface tensiaan
be found by

lll. THE SQUARE GRADIENT APPROXIMATION
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an\?
pi(2)=pE"(2)— P+ C(n)(ﬁ) : (10

A / The extra term is to be regarded as the next in an expansion
in terms of the derivatives of the density; Ed.0) is thus
strictly valid only for small gradients. The parametér
should be independent @h/dz and higher derivatives.

R,

Q In this approximation, the total free energy density
s B pe(2)=pE(2) +pi” is given by

24 2
p D an

’ C pF<z>=pa“<z>+C<n>(5) . (12)

Consequently, ipr(z) andpd"(z) can be calculated, we can
, find C(n) using

n, " n,
n an
cany= PR P (12

FIG. 3. lllustration of generic free energy densjy against (an/az)z

particle densityn, illustrating components of the free energy density
in the local density and square gradient approximations. The Iocq:rom the Euler-Lagrange equation that minimizes the inte-

tion of the equilibrium liquid is marked\, and that of the equilib- . X ‘o A ;
rium vapor C. B indicates the metastable fluighith free energy E:;g]l ':Ealtzq. (8), wherepg(z) is given by Eq.(10), we find

calculated by analytic extension into the metastable region of th
free energy curve in the stable regignshile D denotes the phase B
separated stat@gnoring the effects of the interface in the calcula- a:zj [C(n)(p2"—pEP)1Y2dn. (13
tion of the free energy n®

The value of Eq.(13) is that it permits calculation of the
cal excess free energy density will thenﬁﬁnphys(z)]. The  surface tension without explicit calculation or consideration
accuracy of the results depends, of course, on a reasonaléthe particle density profile, or even of the density gradient,
expression for the excess free energy density having been the interfaceg 30]. All we need is the coefficien€(n) in
chosen. the gradient expansiofi0).

Here, the main aim is to calculate the surface tension
rather than the details of the interfacial structure. A first ap- IV. THE SQUARE GRADIENT APPROXIMATION
proximation forpf(z), known as the local density or point- APPLIED TO A COLLOIDAL SUSPENSION
thermodynamic approximation, is that the free energy den- o .
sity pe(z) at a point in the interfacial region where the In order to ca]culate the surface.tensmn in a}.collmdal
particle density is’ is the same as that in a homogeneousSUsPension, we first calcula@(n) at different densities us-
phase of densityr’. This amounts to assuming that local N9 Eq.(12). At each densityn’, th|§ requires the calcu_lanon
inhomogeneities have no effect on the free energy, which i§f Pr(n’) andpg™(n’). The analytic free energy densipg"

therefore a function only of the local density. It leads to IS simply the free energy density in a homogeneous phase of
particle densityn’; therefore, it can be evaluated using Egs.

(1) and(2). The procedure for the evaluation of the total free
pr(2)=pE"(2) = pf?, (9)  energypg is more complicated: Eqg1) and (2) must be
applied in a modified way.
_ ) The results produced by these equations depend both on
where pg'(2) is the free energy density calculated by ana-the microion density through the parametea (and hence
lytic extension into the metastable region of the free energyn the macroion density because of the requirement for
curve in the stable regioria function only of the local den- charge neutralityand on the macroion separatio8s,. In
sity), and pg** is the free energy density resulting from the the calculation ofp2", we approximate the macroion distri-
mixture of homogeneous statesand g, ignoring the effects  pytion by the simple cubic structure illustrated in the cross
of the interface. Figure 3 illustrates the situation on thesgction in Fig. 4, and the separations between nearest neigh-
pr(n) diagram:p" is on the upward bulge, whilef” is on  hors, next nearest neighbors, and so on can easily be related
the tie line. Unfortunately, minimization df* would pro-  to xa using Eq.(5). All macroions are regarded as equiva-
duce a step function interfadéor which the local density |ent, in the sense that the macroion density is a constant
approximation gives zero excess free energy, since the widtfhroughout the region. The procedure for calculating the
of the interface can be taken to zero whlg remains finite  electrostatic free energy per macroion is to choose one mac-
despite the fact thgwn/dz| —=, aspf does not depend on roion (markedm) and sum over the contributions from its
the gradient The square gradient approximation adds a terrmeighbors. Every macroion in the phase can then be regarded
proportional to the square of the density gradient: as equivalent to this “test” macroion.

061401-4
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O Q O O O density gradient that is valid in the vicinity of macroiom
The density as a function of distanzeoerpendicular to the
—_——

interface is thus given by

Z
ORORONON® (@)=, Kz 2 as
S wherez, is the value ofz at some macroiom. This density

<+>
O O O Q O has a physical meaning only at the points occupied by the
m n

macroions, and we write

ONONONON® =K (22, 16

where zq2 is the z coordinate of macroiom. Recalling that

Q O O O O Ng=1/(s;;Sq), We rewrite Eq.(16) to give

FIG. 4. Schematic of the macroion configuration used in the nn+K(zg—2z,)— 5—=0. a7
calculation of the electrostatic free energy dengij) in a homo- SmSq

geneous phase. If g andn are nearest neighbors in tlzedirection, their

For the inhomogeneous system, we consider the latticEeParation can be found using E@7). There are two pos-
sible cases here. f=n+1, that isz,>z,, corresponding to

shown in the cross section in Fig. 5, with the particle sepa* ;
ration varying only in the direction notated aswherezis to ~ Na= Nn for K=>0, we havez,,;—2z,=(sy+Sy+1)/2, which
be interpreted as perpendicular to the surface. This is ndf@dS 1©0Sn+1=2(Zn41—2,) —Sy. Then Eq.(17) is trans-
intended to be a realistic representation of the interface: it i£€ormed into

simply a device to enable us to evaluate the effect of a den-

sity gradient on the free energy of the test macraioriThe Nyt K2z s 1— ; -0 (18)
macroion separations are determined by considering each nT (270 18y

macroionn to lie at the center of a cuboidal cell, and asso-

ciating a densityn,= 1/, with the macroion, wher®/,, is ~ wherez, ,,1=2,,,—2,. This leads on to a quadratic equa-
the volume of the cell. Let the lengths of those sides of celfion for z, ., ; in terms of the densities and the gradient:

n that lie parallel toz be equal tcs,,. Other sides of the cell 23 23

have lengtrs,,, wheres,, is the side length of the cubic cell 2 +(E_ ”_m) , o Mm (19
around the test macroiom. The density an can then be nntl i K 2n,) MM K ’

expressed as

Here, we have used Eq14) to find s,=1/nY* and s,

1 =nfrf3/nn. The physically significant solution of EQL9) is
nn=2—. (14)

S 1 ( 2 g \/( 2 nn>2+ 4n2m’3]
z =—i——— — | +—.
The density gradient enters the model as a condtant T2 2n, K 2n, K K
This does not mean that the density gradient is constant (20

throughout the interface, only that it is possible to define aThe second case ig=n—1, that isz,<z,, which corre
=n—-1, . .

sponds tony<n, for K>0. Thenz,, 1=—(sp+5s,-1)/2
O Q O Q O ands,_;=—2z,,-1—S,. The quadratic equation ir, ,_;
- is

O O OO0 2

2/3
nn m m
anl—l w5 w
r-- T TrT T T aTs,T T T T T !

! K ZnH)Z”’”_1+K 0, (21

‘Snl | | | | [
: O : Q : Om: Q :On: the physically significant solution of which is

O O QOO0 R LN [ e

2n, K 2n, K K

o 0 0&o §

We can calculate the macroion separations that satisfy
FIG. 5. Schematic of the macroion configuration used in theEQs. (14) and (16) by starting from the “test” macroiomm
calculation of the electrostatic free energy dengifyof a system and moving outward, repeatedly applying EGO) or Eqg.
with a density gradient. Dashed lines indicate the boundaries of thé22) depending on the direction in which we are traveling.
cells around some of the macroions. This allows us to find macroion separatiofs, for the in-
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homogeneous system, and these separations can be used in ¢=24.0
Egs. (1) and(2), which involve sums over macroions to 15
estimate the electrostatic free energy per macroion in an in-
homogeneous system. The local microion density, which is — (=285
required for the calculation oka, is assumed to take the
same value as it would in a homogeneous system of the same 10 £23.0
macroion density. One consequence of this assumption is ©
that the only change that the inhomogeneous system requires

in the calculation off¢, is in the macroion separatiors,, .

As the density gradients are required to be small for the
square gradient approximation to be valid, we take the ideal ¢=220
gas contributionAf, to the free energy to have the same
value in the inhomogeneous system as in a homogeneous 0 , , , , ,

(=225

system of the same macroion density. 0.0 0.001 0002 0.003 0.004 0.005
The difference that appears in the numerator of @§)
for C can be expressed as a difference in electrostatic free n

energy contributions: : . .
oy FIG. 6. Surface tensiom, expressed in units ¢Z|kgT/10002,

n)— p2(n)=n[f.(n,K)— 21, 23 as a function of the volume fraction of the metastable vapor, for
pe(n) = pr (=Nl e )= Ter(n)] 23 various values of under conditions of zero added salt. The range

wheref,, is the electrostatic free energy per macroion in the®f values ofz spans the binodal-spinodal range.

inhomogeneous system, calculated using Etjsand(2) as  vapor and a phase whose density is equal to that of the equi-
detailed above, andi3]' is the electrostatic free energy per fibrium liquid. The surface tension is expressed in units of
macroion in a homogeneous system at the same density. A{Z|kgT/100(2. The domain of the calculations spans the
cording to the square gradient approximation, the calculatechetastable region between the binodaWw 7) and the spin-
value of C should be a function of the density but should odal (high #); the surface tension of the interface between
not depend on the density gradiemt/dz at a given value of the liquid and the equilibrium vapor is at the binodal end of
n. Of course, this is only true for smaih/dz, as the square the lines. Because of Ed6), the end points of the lines
gradient approximation is not expected to be valid in a sysdepend only on.
tem with a large density gradient. The dependence af on 7 is weak; the vapor is always
Having calculatecC numerically as a function of density, Much less dense than the liquid, so that small changes in the
we can insert it into Eq(13); the integral can then be per- Vapor density have little effect on the difference in density
formed numerically in order to evaluate the surface tension€tween the two phases, and therefore litle effect on the

This or re also requires th lculati # which hature of t_he interface. Figure 6 makes it cl_ear that, at fixed
s procedure also requires the calculatiorpff”, ¢ olloid radius, the surface tensigaxpressed in these unjits

can be found using the geometry Of Fig. 3. Since the state oﬁmreases with chargg and therefore diminishes as the criti-
the bulge and the state on the tie line have the same macrg;

ion density, the ideal gas contributions to the free energy o al point is approached, and thaincreases with decreasing

the two states can be regarded as equal. Therefore acroion radius at fixed charge.
WO S S 9 S equal. ! If the macroions have a radius of 50 nm, the actual values
B_ Y
nf—n n—n
pé"—pféﬁ:n{ :rm)—(—)ff;.—( )fﬁ.

of the surface tension are of the order of £0Jm
is several orders of magnitude smaller than the surface ten-
sions encountered in molecular fluids {02 Jm 2), but
(24 closer to, although slightly larger than, figures measured and
calculated for  colloid-polymer  mixtures [32,33
wherefg, andf, are the electrostatic free energies per mac(~1076-10"5 Jm2). Experimental and theoretical results

’

2, which
nf—n® nf—n®

roion in homogeneous systems of densiti€sandn”. [34] for solid-liquid interfaces in hard sphere systems sug-
gest a figure of around I6 Jm 2 for hard spheres of di-
V. RESULTS FOR THE SURFACE TENSION ameter 100 nm. Larsen and Gr[&] used their observations

of metastable colloidal crystallites to estimate a lower limit

of ~10°® Jm ? for charged colloidal particles of radius

326 nm. Our results for=22.0 nmi ! suggest a figure of

1 around 5<10° 7 Jm 2 for macroions of this radius, so the

o(C|Z|,Ca)==o(|Z|,a), (25) Larsen and Grier experiments may have been undertaken
C very close to the critical point{(<22 nm1).

We find that the following relation holds for the surface
tensions calculated under conditions of zero added salt:

whereC is an arbitrary constant. This means tlgtif ex- VI. HOMOGENEOUS NUCLEATION THEORY
pressed in units proportional t@|/a2, depends only on the

ratio =|Z|/10%a, and not onZ| or a individually. Figure 6
shows the calculated surface tensignas a function of vol- In the remainder of the paper, we investigate phase meta-
ume fractions, for a planar interface between the metastablestability and nucleation in a charged colloidal suspension.

A. Introduction

061401-6
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AF
N,V
N,
0
\ —
0 i . FIG. 8. Schematic of the process of formation of a liquid droplet

l of radiusR, volumeV, , and densityN, /V, from a metastable vapor

FIG. 7. lllustration of the dependence on the cluster siziethe of volumeV and densitN/V.

free energy cost\F of forming a generic liquid cluster from the

metastable vapor. critical cluster is proportional to the exponential of the nega-

tive of the work of formatiolAF* of the critical cluster, and

First, we shall introduce the classical theory of homogeneou§ince a cluster that exceeds the critical size will tend to grow
nucleation. Consider a small liquidlike cluster containing N0 & macroscopic droplet, we consider the probability of
particles, surrounded by its vapor. We wish to consider thdormation of a droplet also to be proportional to this. The
work AW required to form such a cluster from the vapor. In Becker-Daing equations relate the nucleation rdtghe rate

a system whose constraintsonstant temperature and vol- ©f formation of droplets to the formation probability 35],
ume, and no exchange of matter with the surroundimgs ~ 9ving, to & good approximation,

such as to make the Helmholtz free enefgg minimum at _ .

equilibrium, the workAW required to cause a reversible pro- J=Joexp(—AF*/kgT), (27)
cess 1o happen is equal to the chage in the Helmholtz where the prefactal, emerges from a detailed consideration

free energy during the process. With a view to applying theof the condensation rate of monomers on to a cluster and

results to the colloidal system discussed in the previous SEGT air evaporation rate from a clustd is only weakly de-

tions, we shall consider nucleation under these external con- . ) .
straints, and s@W=AF. This makes the assumption that pendent on the cluster size, for a given substance under given

the states before and after the formation of the cluster can b%ondltlons.

joined by a reversible path.

We make the assumptions of classical nucleation theory:
that is, the cluster can be described as a very small spherical
droplet of liquid of radiusR, which behaves in the same way ~ Now we wish to derive the Helmholtz free energy cost of
as a macroscopic spherical drop in the sense that it hasfarming a liquid cluster from the vapor, in order to justify
well-defined surface whose area, because of the geometry gfy. (26). Figure 8 illustrates schematically the process of
the sphere, is proportional {8”. The surface tensioor and  formation of an arbitrary droplet or clusténot necessarily
densityn, are regarded as having the same values as theye critical cluster. The initial state consists of a homoge-
would in a macroscopic quantity of liquid under the sameneous metastable vapor Nfparticles in volumeV. The final
conditions. If the cluster is sufficiently small that its forma- state comprises a spherical liquid cluster of radrRignd
tion from the vapor produces a negligible change in the denvolume V,, containingN,=i particles at constant density
sity of the vapor, the free energy cost of forming the clusteri/v,, and a vapor of volum#&,, containingN, particles at
from the vapor can be expressed as constant densityn,=N,/V, . This is the Gibbsian view of

_ . . 2/3 the structure of a cluster. The temperatliy¢he total number
AF=Afpi+ 17 (26)  of particlesN, and the total volume/ are held constant

hereAf. is the f ¢ forri il throughout the process. Using the Euler relation of thermo-
whereAf, Is the free energy cost of transferring one partic edynamics and the definitoR=U—TS, the free energy,,

from the vapor to the liquid phase, arid is a parameter of the initial homogeneous state can be written as
proportional to the free energy cost of creating a unit area o

the surfacef is positive, while, if the vapor is metastable, Fr=—pnV+uN, (28)
Afy will be negative.

The shape ofAF(i) is shown in Fig. 7; it possesses a wherepy, andu,, are, respectively, the pressure and chemical
peak at a critical cluster sizaé& . Clusters larger thai* will potential in the homogeneous metastable vapor. The free en-
tend to grow, but a cluster can only reach this size by meansrgy after the formation of the cluster B=F,+F,+Fq,
of random fluctuations: clusters smaller thidnare unstable where the bulk free energy of the liquid cluster Fs=
with respect to the vapor. The formation probability of a —p,V,+ N, (p; is the pressure in the liquid ang, is the

B. The free energy of formation of a liquid cluster:
Classical theory
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chemical potentia) and that of the remaining vapor I5,  where the second step follows from the ideal gas equation of
=—p,V,+u,N, (p, andu, are the pressure and chemical state. Thus, the third and fourth terms of E82) cancel one
potential in the vapor The free energy, of the (theoreti-  another, and we are left with
cally infinitesimally thin interface is given by
AF=—=(p=P,)Vi+ (= p,)N + oAs. (39
Fs=0As+ usNg, (29
The pressur@, and chemical potentiak, of the liquid clus-
whereo is the surface tensior is the surface area of the ter will not have the same values as the pressure and chemi-
cluster,u is the chemical potential in the surface, adglis ~ cal potential in the bulk equilibrium liquidthe liquid that
the number of particles associated with the surface.dfhg  would eventually appear in the final, mixed equilibrium
term has been added to the energy, and therefore to tretatg, which we will denote byp;® and u%, respectively.
Helmholtz free energy, in place of-apV term. The excess However, a relation between the two states can be found, in
value F* of the free energy after the cluster has formed isorder to eliminate explicit reference pp andw, . We rewrite
F. If we choose the interface to correspond to the equimolaEg. (35) as
dividing surface(which is defined byN,+N,=N), the ex-
cess number of particleN, is zero andF = cA,. This al- AF=—=(pi=pPr)Vi— (PF*— pu) Vit (1= )N + oA
lows the parametefr;, which was introduced in Eq26), to (36)

be expressed as Thermodynamic integration of the Gibbs-Duhem relation be-

tween the bulk equilibrium liquid state and the state of the
fS:(367T)1/3%3_ (30) liquid in the cluster, under the constraints that the tempera-
n ture T and volume per particley;, are held constantthe
latter constraint implies that the liquid is incompressible,
Here, of course, we have made the classical assumption thahich is clearly an approximationleads to the relation
the surface tension is independent of the size of the cluster.
Sinced(AF)=0 ati=i*, the critical cluster is in equi- p—pro=n(w — 109, (37)
librium with its vapor. This is an unstable equilibrium: the
system is unstable against arbitrarily small changes in thwhere we have used the fact that= 1/, . Inserting Eq(37)
size of the cluster. We now consider the chemical potentiainto Eq. (36), recalling thatn;V,=N;, and making the as-
when the cluster is at the critical size. Using the facts thasumption that the vapor is perturbed only slightly by the
V,+V,=V andN,+N,=N, we can write the total free en- formation of the clusterg,~p, and u,~ up), we find
ergy of a system containing an arbitrary cluster as
Horasy J Y AF=— (P pp)Vi+ (4 p)Ni + oA, (39)
PPVt (= )Ny va+MUN+0AS'(31) Using the relatiorf = u— pv, which results from the defini-
tions of the Helmholtz free energy and the chemical poten-
Requiring the unstable equilibrium conditigiv/dN;=0 to tial, Eq. (38) can be rewritten as
hold, we find that the critical cluster corresponds to the
equality of the chemical potentialg;® = u* . (However, the AF=[f"=f,+pn(v;—vn) IN;+ gAS. (39
pressures inside and outside the droplet are not equal. i ) L
Subtracting Eq(28) from Eq.(31), the free energy cost of Equation(39), together with Eq(30), justifies the form for

forming an arbitrary spherical droplet can be expressed as AF given in Eq.(26), with
AF=—(p=P,)Vi+ (= ,)Ni = (P, ~ Pr)V Afy=F=fnt pn(vi—vp). (40)

+(py— )N+ oAs. (32 Figure 9 illustrates on af(v) diagram the physical plau-
sibility of the above expression fakf,. The line BD is

The metastable vapor can reasonably be treated as an ideghgential to the analytic free energy curvevat The length
gas, both before and after the formation of the cluster. Thugf line AE is equal toff%—f,,, while the length ofDE is
we can use the characteristics of the ideal gas to write equal to— p,(v,—vy), sincepy, is —df/dv evaluated aB.

So

:kBTIn 1+

Py Py~ Pn

Ho™ b kBT'“( P b ) 39 Afy=|AE| - |DE]. (41
Provided the cluster is small enough that the perturbations td an upward bulge, indicating phase coexistence, is present,
the vapor due to its formation are sméhat is,p,~p), we  Af, will clearly be negative; its magnitude will be the length
can take only the first term in the expansion of k) in of the lineAD. The maximum value of the magnitude &f ,
powers ofx, to give corresponds to the locally most negative valuedbidv (the
local maximum ofp), which is located at the spinodal. &
approache€ (the binodal, Af,, will diminish; whenB and

C coincide p,=v.9, the tangent8D andAC will coincide

Py = Pn
Pn

V
Iu’l)_lu‘hkaT( ) :(pv_ph)ﬁa (34)
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stable vapor is close to the binodgl,&p? and wp~ uo9.

Sincepf®=p;and u/%= u29, we have

AF=—=(py=pn)Vi+ (u, = un)Ni+ oA (46)

Of course, bothp?—py, and x.% 1y, go to zero at the bin-
odal. Using the characteristics of an ideal gas, we can rewrite
Eq. (46) as

AF e ngd
kB_T:_(nU —np)V,+In n—h N, + oAq
nd—ny, nd—ny,
=| — nh+|ﬂ 1+ n, V|+O'AS (47)
i i

(where in the second stage we have used the factNhat
=n,V,). For smallx, In(1+x)~x, so near the binodal Eq.

the volumey per particle, illustrating the qualitative correctness of (47) becomes

Eq. (40 for Af,. See text for details.

andAf,=0. Forv,>v9, Af, is positive, corresponding to

a single phase equilibrium state. FinalgD and AC will

)(_nh+n|)V|+O'AS; (48)

AF  [n$%—n,
keT |y

coincide also at the critical point, where the analytic freesince nj>n,,, this leads to the disappearance of the term

energy curve betweeA andC becomes a straight linéf,

derived from thepV term in Eq.(46), and

is zero here, and becomes negative on the other side of the

critical point, where the equilibrium state is a single phase.

Having justified the form of Eq(26), we can use it to

calculate the critical cluster size and work of formation

AF~(ug™= up)N+ oA. (49

Expressions of the fornt49) for the work of formation

within the classical approximation. The critical cluster is l0- are often given in the literaturg26,36. It is important to

cated at the maximum oAF(i), so (@(AF)/di);—i»=0,

which leads to
*:_E fs :
27\ Afy

(recall thatAf, is negative if the vapor is metastaplend
therefore

(42

At LAty 43
Ty 2T “
Inserting Eq.(30) produces
. 3277( o )3 ”
R
3n? | Afy
and
*_1677 ol (45)
3n (Afp)?

C. The link with other formulations

remember that this expression requires approximations that
hold only close to the binodal; thus it can be thermodynami-
cally justified only when the metastable vapor is close to the
binodal. Deeper into the coexistence region, it leads to sig-
nificant, though not catastrophic, errors in calculations for a
colloidal system; however, the errors are generally assumed
to be insignificant for simple molecular fluids, becaysé
terms are usually small in such condensed phases.

D. Modification of classical nucleation theory

Examination of the classical expressions iforand AF*
given in Eq.(43) reveals a problem: since bothf, andi*
are nonzero at the spinodalF* will also be nonzero here,
which disagrees with results from density functional theory
[37,38. Intuitively, also,AF* should go to zero at the spin-
odal, since the vapor at this point should be unstable against
arbitrarily small density fluctuations. It is not surprising that
classical nucleation theory is unreliable, since a liquid cluster
containing only a small number of particles does not really
resemble a macroscopic droplet with a well-defined surface.
We shall apply a simple phenomenological correction given
by McGraw and Laaksonef89] and Talanquef40]. This
assumes that, whili& continues to be expressed by E4Q),
AF* contains a correction term that depends only on the

Equation(38) is not the most common expression used intemperature:

the literature to calculate the critical work of formation, and
it is important to relate it to the more usual expressions.
Consider the form of Eq38) when the homogeneous meta-

1
AF*=—§Afbi*+D(T). (50
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FIG. 10. Critical cluster sizé* as a function of the volume FIG. 11. Critical cluster size* as a function of the volume

fraction » of the metastable vapor, for colloidal particles of radius fraction of the metastable vapor, for colloidal particles of radius

a=50 nm and various charges under conditions of zero added =50 nm, under conditions of zero added salt. Magnification of Fig.
salt. 10.

The correction termD(T) is evaluated by requiring that metastable region, reaching zero at the spinodal. Of course,
AF* vanishes at the spinodal, which gives we have modified classical nucleation theory to ensure that
the barrier is zero at the spinodal; otherwise it could be of the
order 16—-10° kgT.

The calculated homogeneous nucleation fafensity of
critical clusters formed per seconis illustrated for macro-
whereAfiP andi* °P are equal ta\ f, and the critical cluster jons of radius 50 nm in Fig. 14. This uses the nucleation rate
size, respectively, evaluated at the spinodal. Thus, the cofrom Eq. (27), where AF* is given by Eq.(52) and the
rected expression for the critical work of formation is prefactor J, is estimated from classical nucleation theory

[42]:
" Namn,”

Here,n, andn, are the number densities of particles in the
homogeneous metastable vapor and the liquid state, respec-

1
D(T)= 5 AfRR*<P, (51)

1
AF* == S (Afpi* = AfFA**P). (52

In the following section we shall use E¢(62) to calculate
some nucleation rates in colloidal systems.

VII. NUCLEATION IN COLLOIDAL SYSTEMS
100000

When the dependence of the surface tension on the der
sities of the phases is known, we can calculate the critical
size of a liquidlike cluster using equation E@?2) and the 80000
work of formation of the critical cluster using E(52). Fig-
ures 10 and 11 show the variation of the critical size as ap,
function of the colloid volume fractiom; (and therefore of g
“distance” into the metastable regiprior macroions of ra-
diusa=50 nm and various surface charges. Figure 11 is a 40000
magnification of Fig. 10. The critical size approaches infinity
at the binodalthe small# ends of the lines and falls rap-
idly as we move further into the metastable region towards
the spinodalthe largen ends of the lines The critical size
also increases as the macroion charge decreases towards t 0 1 T T
critical point (Z|=1070 fora=50 nm). This is in line with 00 0001 000z 0003 0.004 0.005
the results of a recent investigation of the critical size at the 7
approach to the spinodal in molecular systdidis.

Figures 12 and 13 show the barrier to nucleation of the FiG. 12. Nucleation barrienF* of the critical cluster as a
critical cluster for macroions of radius 50 n¢Rig. 13 is a  function of the volume fractiom of the metastable vapor, for col-
magnification of Fig. 12 The barrier approaches infinity at loidal particles of radius=50 nm and various charges under
the binodal, and falls steeply as we move further into theconditions of zero added salt.

60000

oozi=iz!

20000
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0.0 0.001 0.002 0.003 0.004 0.005 FIG. 15. The Swiss cheese effect discovered by Yoshkidal.
White represents solidlikéordered regions, while black represents
n liquidlike and gaslikgdisorderegiregions. A solidlike phase nucle-

_ _ N ates(a) from the initial liquidlike state on a time scale of seconds to
FIG. 13. Nucleation barrieAF* of the critical cluster as a minutes’ to produce Space_ﬁ”ing Crysta[s. Then gas”ke regions

function of the volume fraction of the metastable vapor, for colloi- form within the crystals and at their interfadesy, on a time scale of
dal particles of radius=50 nm, under conditions of zero added minutes to hours.

salt. Magnification of Fig. 12.

|Z|=1200, this critical cluster size is of the order of 50, and
tively, and the masm of a particle is calculated by assuming classical nucleation theory begins to appear implausible. If
the colloidal particles to have the same density as water. Likehe macroion surface charge were larger than this, there
the work of formation, the homogeneous nucleation rate dewould be no reason to think that an observed homogeneous
pends very steeply on the location within the metastable renucleation process could be described using the classical
gion of the system prior to phase separation. In most of theheory, since it would involve critical clusters too small to be
metastable region, the nucleation rate is so small that theegarded as liquidlike droplets with surfaces.
process would not occur on an observable time scale. It is The upper limit of the nucleation rate would be limited by
only in a small region that nucleation rates are in the vicinitythe rate at which colloidal particles can diffuse, and would

of InJ=0, allowing the progress of the nucleation process tmot be well described by classical nucleation theory.
be observed as it wador crystals nucleating from a meta-

stable fluid and voids nucleating from a metastable crystal
by Yoshidaet al. [8,9].

For |Z|=1100 the critical cluster size whenJr-0 is of Finally, we shall discuss the Swiss cheese eff@é@] (see
the order of 18, which is large enough for the assumptions Fig. 15 with reference to nucleation theory. This phenom-
underlying classical nucleation theory to be reasonable. Fagnon involves the formation of space-filling crystals from an

initial disorderedliquidlike) state on a time scale of seconds

VIIl. THE SWISS CHEESE EFFECT

to minutes, followed by the formation of gaslike regions, on
0 a time scale of minutes to hours, both within the crystals and
at the interfaces between them.

200 We hypothesize that the initial disordered state is meta-
stable with respect to a solidlike state, which is itself meta-
stable with respect to the final phase separated state compris-

2 007 ing a solidlike phase of slightly higher density together with
- a gaslike phase. The initial state lies in a region of the phase

-600— diagram where the most thermodynamically favorable single
phase is solidlike, and this solidlike phase can nucleate fairly

800 quickly (on a time scale of seconds to minytethe initial
liquidlike phase and the nucleating solidlike phase have

1000 similar densities and therefore the surface tension of their

- T T T T T

interface is small. The fact that the metastable crystallites
appear throughout the bulk of the suspension demonstrates
7 that the process of homogeneous nucleation is taking place.
The nucleation of the gaslike regions within and between
FIG. 14. Natural logarithm Id of the nucleation rate as a func- the metastable crystals is a much slower process, because the
tion of volume fraction, for colloidal particles of radius large difference in the densities of the two phases leads to a
=50 nm and various charge® under conditions of zero added relatively large surface tension, and therefore to a large bar-
salt. J has units of m3s™ 2, rier to nucleation. There is evidence of both homogeneous

0.0 0.001 0.002 0.003 0.004 0.005
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(in the interiors of the crystal@nd heterogeneous nucleation state of homogeneous density is solidlike rather than disor-
here: the heterogeneous nucleation takes place at the intafered, an initially disordered state will tend to change to the
faces between crystals and is the cause of the gaps that forsolidlike state, and this will happen much more easily than
between them. This process happens because particles at the phase separation into a dense and a rarefied phase. The
interface are already thermodynamically “disadvantaged” bycompeting crystals that result from this first nucleation pro-
the presence of the interface, and so the additional free emess will leave interfaces at which heterogeneous nucleation
ergy required to form the surface of a gaslike region ismight take place, although in this particular experimental
smaller than it is in the bulk. However, the heterogeneousystem the process does not appear to be significantly faster
nucleation is not so much more favored that it preempts hothan homogeneous nucleation.
mogeneous nucleation and prevents it from being observed,;
if this were the case, the “cheese” would have no holes in it.

There is another mechanism that could contribute to the IX. CONCLUSIONS
appearance of gaslike regions at the interfaces of the crystals:
small bubbles of the gaslike phase, formed by homogeneous Our results predict that the Helmholtz free energy of a
nucleation, could diffuse to an interface from the body of acharged colloidal suspension containing univalent microions
crystal. This process is thermodynamically favorable since itnd no added salt, expressed in dimensionless units, depends
reduces the surface area of the crystal. However, we cannoh the ratio of the macroion charge to the macroion radius,
attribute the formation of the gaslike regions at the interfaceand not on the charge or radius separately. This simplifies the
entirely to this mechanism; if homogeneous nucleation ocdescription of the phase behavior, and implies that the occur-
curs in the interior of the crystals, heterogeneous nucleatiofence or nonoccurrence of phase separation into a dense and
at the interfaces seems inevitable, since it is by definition & rarefied phase is governed by this ratio.
faster process than homogeneous nucleation. This paper has presented the first theoretical estimates of

It can be seen from Fig. 14 that the rate of homogeneougyrface tension in charged colloidal suspensions, calculated
nucleation is VaniShingly small in most of the metastableusing density functional theory in the square gradient ap-
region, so that in practice the process would only be obproximation. The calculated values are of a reasonable order
served in a small part of the region. This is not just a featurgf magnitude, and approach zero, as expected, as the critical
of colloidal SyStemS: it results from the exponential depenmacroion surface Charge is approached_ Know'edge of the
dence of the nucleation rate on the work of formation of thesyrface tension allows the characteristics of the critical clus-
critical cluster, and applies also to simple fluids. However, inter, and therefore also the rate of homogeneous nucleation, to
simple fluids the process of homogeneous nucleation is Usie calculated, at least within classical nucleation theory. The
ally preempted by heterogeneous nucleatiprcause the results emphasize the fact that the homogeneous nucleation
roughness on the molecular scale of the surfaces of impurizte depends very steeply on the conditions, so that, in large
ties and of the walls of the container provides highly advanparts of the metastable region, homogeneous nucleation
tageous sites for heterogeneous nucleatiso that a meta- would not be observed on any practical time scale. Physical
stable state is unlikely to endure for long. It was argued agrguments and experimental evidence suggest that heteroge-
the beginning of this paper that this should not be the casgeous nucleation is not significantly faster than homoge-
for colloidal systems, and the experimental results Ofheous nucleation in many colloidal systems; in this case,
Yoshidaet al support this conclusion. phase separation might never occur in large parts of the

Unless heterogeneous nucleation were much faster thafetastable region, and the calculation of nucleation rates
homogeneous nucleation in a particular colloidal suspensioRyould then be as important as equilibrium calculations in the
metastable states in most of the metastable region would, ieoretical prediction of phase coexistence.
all intents and purposes, be stable: phase separation would The Swiss cheese effect observed by Yostetial. [9]
not be seen to occur on any experimentally accessible timgan be explained qualitatively in the context of nucleation
scale. Thus, consideration of surfaces and nonequilibriunheory. The initial formation of competing metastable crys-
processes would be essential to the study of these systemgjs from a metastable liquidlike phase is evidence of homo-
Even an exact calculation of the equilibrium phase diagranyeneous nucleation, while the subsequent formation of gas-
would be an incomplete description of the phase behaViorﬁke regions shows Signs of both homogeneous and
Only a calculation of the nucleation rates could tell us Whichheterogeneous nucleation. The poss|b|||ty of heterogeneous
phase separated states would be observed in practice. Thaggleation at the boundaries of metastable crystals suggests a
conclusions are also relevant to computer simulations: ifnechanism by which phase separated states that are inacces-
most parts of the metastable region, simulations would havgjple by homogeneous nucleation might nonetheless be ob-

to run for an extremely long time before evidence of phas&erved, even in the absence of other heterogeneous nucle-
separation could be detected. ation sites.

However, the experiments of Yoshidzt al. suggest a
mechanism by which phase separation could occur even if
direct homogeneou_s nucleation were too §Ic_J\_N a process to be ACKNOWLEDGMENT
observable, even if there were no possibility of heteroge-
neous nucleation at the walls of the container. If the system This research was supported by the U.K. Engineering and
is in a region of the phase diagram where the most stablPhysical Sciences Research CourEiPSRJ.
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