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A cavity model of the indentation hardness of a coated substrate 
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Abstract 

A simple model is proposed which predicts the hardness of a coated substrate as a function of coating tbackne~and 
indentation depth. The model is based on an analytical solution for the stress and strain fields around a pressurized 
coated spherical cavity, taking into account elastic and perfectly plastic deformation. The predictions of the coated 
cavity model can be applied to the plane coated surface by making various geometrical correspondences, and the 
model shows good agreement with fi~dte-element calculations and experimental results for the case of a hard film on 
a soft substrate. For the less important case of a soft film on a harder substrate the cavity model is less successful 
for the plane coated surface geometry, owing to bulging at the free surface. 

1. Introduction 

One of  the most important emerging areas in tribol- 
ogy is the use of coatings to alter the properties of 
surfaces (see for example refs. 1-3). A suitable choice 
of coating material can improve the mechanical or 
chemical nature of the surface, whilst retaining the 
desirable bulk properties of  the substrate. For example, 
it might be advantageous to fashion a cutting tool out 
of a cheap, easily formed material and then to harden 
its surface by coating it thinly with a more expensive 
material. Alternatively, a coating might be used to 
improve the corrosion resistance of the surface of a 
component. 

Theory can make an important contribution toward 
optimizing the properties of the coated substrate. The 
aim of this paper is to account for the dependence of 
the effective hardness on the depth of indentation into 
the surface. For very large indentations, the hardness of 
the coated surface should be approximately equal to the 
hardness of the substrate material. Conversely, for 
small indentation depths, the surface should respond 
with the hardness of the film material. For intermediate 
depths, the hardness will lie somewhere between the 
two limits. Theory can determine this behaviour and 
characterize how and under what conditions the coating 
can affect the surface properties. An appropriate coat- 
mg thickness might then be selected according to the 
requirements of the application. 

The problem has already been approached in a num- 
ber of ways. Perhaps the definitive treatment is to 
model the elastoplastic deformation of the coated sub- 
strate numerically using finite elements [4] together with 
appropriate constitutive laws. This approach has a 
number of advantages, but calculations are cumber- 

some and expensive, and the results are specific to the 
properties of the materials modelled. It is arguably 
more useful to have available an approximate treat- 
ment, based on simple analysis, which can be used 
quickly to give hardness estimates, and which can be 
used to generalize behaviour, and to identify trends. 

A number of such models have been proposed and 
used for this purpose [5-12]. However, some of the 
models are semiempirical and lack a rigorous analytical 
basis, while others are applicable only for linear materi- 
als [13, 14]. Furthermore, fitting parameters are some- 
times necessary. In this paper a new model is proposed, 
based on the elastoplastic stress-strain solution for a 
pressurized coated spherical cavity. Similar approaches, 
based on an uncoated cavity, have been used to account 
for the hardness trends of uncoated substrates [15-20], 
and so it is a natural step to extend the method to 
include a coating. The results of the analysis are then 
applied to the real situation by a suitable mapping of 
the geometry. 

In the following section, some prevaous models are 
reviewed briefly. In Section 3 the analysis of the pres- 
surized coated spherical cavity is given, and the model 
is then applied to the indentation of plane coated 
substrates in Section 4, which includes comparisons 
with finite element calculations, other analytical models 
and real data. The model is discussed in Section 5 and 
conclusions are given in Section 6. 

2. Models of coated surface hardness 

Two models have previously been developed to 
provide simple estimates of the composite hardness of a 
coated substrate. The first of these, due to Jfnsson and 
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Fig 1 Geometry of indentation (for pyramidal indenter) used in 
area mixture law of composite hardness proposed by Jonsson and 
Hogmark [6] The film supports part of the load only at the margin 
of the indentation, within area Af 

Hogmark [6], uses a geometrical approach to combine 
the hardness of  film and substrate according to an area 
mixture model. The approach is illustrated in Fig. 1. 
The film is considered to provide support only at the 
margin of  the indentation area; elsewhere, it is assumed 
that the film is cracked and transmits the load directly 
onto the substrate. The composite hardness is given by 

Ar H As H ~ = ~ -  r + T H s  (1) 

where A¢ and As are the supporting areas, A = Ar + As, 
and Hf and Hs are the hardness of the film and sub- 
strate materials respectively. An analysis of  the geome- 
try [6] leads to 

H,= Hs+[ 2Ch 2/"h '2-] 
- - -  ta) / ( ' -  

where h is the thickness of  the coating, d is the depth of 
indentation and C is equal to 2s in211°=0.073  if 
Hf>>Hs, or s in222°=0.14 if Hf~Hs, for a Vickers 
pyramidal indenter with an angle of 136 ° between op- 
posing faces. However, the model is unsuitable for 
indentation depths less than the film thickness, since it 
relies on film cracking to transmit load directly onto the 
substrate over the central part of the contact area. 

In the second model, known as the volume mixture 
model [7-11], the hardness of film and substrate are 

combined according to the volumes of plastically de- 
formed materials: 

Vf Vs H ~ = T H f + T H  s (3) 

In an early version of  the model [8], plasticity was 
assumed to be confined to a hemisphere of radius equal 
to the radms of the indentation impression at the 
surface (for a conical indenter), of  volume V, contain- 
ing the film and the substrate plastic volumes Vf and 
V S. It was assumed that the indenter penetrated the film 
as shown in Fig. 2(a). The composite hardness, for 
d > h, can be written 

3h2(1 - (t  + cot 2 4))h/(3d)) 
Hc = Hs + d2(2 tan 4) - 1) ( H f -  Hs) (4) 

where 4) is the semi-angle of a conical indenter. The 
coefficient of H r -  Hs leads in second order in h/d, in 
contrast with the J6nsson-Hogmark  model (eqn. (2)). 
A different expression holds for d < h. 

The volume mixture model was subsequently devel- 
oped by Burnett and Rickerby [9, 10] such that the 
plastic volumes were not confined to the hemisphere 
under the indenter but were related to the plastic vol- 
umes in the spherical cavity model [16], according to 
which the plastic zone radius is given by the elastic and 
plastic properties of the material. The revised geometry 
is shown in Fig. 2(b) for a hard film on a soft substrate. 
The radius of  the plastic zone in the film material is 
smaller than that for the substrate material. Accord- 
ingly, the ratio of film plastic volume to substrate 
plastic volume is less than that found in the original 
model, for a hard film on a soft substrate. Similar 
arguments can be apphed to the case of a soft film on 
a hard substrate. However, it" was recognized that the 
plastic radii in each material are influenced by each 
other and are not simply given by the spherical cavity 
model. This was allowed for by the modification of one 
or other of the terms in eqn (3) by an additional 
coefficient Z 3, which was fitted to data The model was 
also extended, empirically, to allow for the indentation 
size effect [10], whereby the hardness depends on inden- 
tation depth even for uncoated substrates [21, 22]. The 
most recent development of the model has been to 
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(a) (b) Vs 
Fig 2 Geometries used in volume mixture law of composite hardness (a) scheme in ref 8, (b) scheme in ref 9 
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introduce a more realistic geometry whereby the film 
is allowed to penetrate into the substrate [tl] .  The 
approach has been used to interpret a wide range of 
experimental data [I0, 11]. 

However, whilst the combination of hardnesses ac- 
cording to the areas supporting the load is intmtively 
appealing, the volume mixture model lacks an equiva- 
lent argument to justify the combination of hardness 
values according to the relative plastic volumes. Su- 
perficially, it would appear from eqn. (3) that the total 
indentation work has been divided into parts due to the 
deformation of the film and substrate, but this is not a 
correct interpretation. The total work done would in- 
volve the indentation volumes, and not the plastically 
deformed volumes. 

To sum up, available models of the composite hard- 
ness of a coated substrate are not based soundly in 
theory. What seems to be missing in the development of 
these models is a clear reference to the analytical work 
which has been applied to the indentation of bare 
substrates [15-20]. Such work, based on spherical cav- 
ity analysis, has improved understanding in that area 
and might be similarly useful in the study of the coated 
substrate problem. 

3. Spherical cavity analysis 

A particularly fruitful approach to the modelling of 
the indentation of  surfaces has been to make use of the 
known stress-strain fields around a pressurized spheri- 
cal cavity in an elastic, perfectly plastic material [ 16]. In 
spite of the obvious differences in geometry (in particu- 
lar the free surface and the non-spherical indentation 
volume in the plane surface case), the predicted depen- 
dence of hardness on Young's modulus and yield stress 
of the substrate material is quite successful [ 15, 17, 18, 
20]. A natural extension of this approach is to consider 
a pressurized spherical cavity with a shell of film mate- 
rial separating the cavity from the bulk substrate, and 
to use the geometry as a model for the indentation of a 
coated substrate. In this section we consider the coated 
cavity problem, and the connection with plane surface 
indentation is made in Section 4. 

The geometry of the problem is illustrated in Fig. 3(a). 
A spherical cavity of radius a, containing a fluid at some 
pressure p, exists within a bulk material with Young's 
modulus E~, Poisson's ratio v s and yield stress Ys. 
Between the cavity and the bulk material is a spherical 
shell of thickness t - a  with material properties E r, v r 
and Yr. The shell will be referred to as the film, while the 
bulk material is denoted the substrate. Both materials 
are assumed to be elastic, perfectly plastic. 

As the cavity expands, a number of deformation 
regimes may be encountered, depending on the relative 

material properties. Imtially, all strains are elastic, until 
plastic yield begins at the tuner radius of either the film 
or the substrate. Further expansion of the cavity then 
increases the size of the plastic zone. It may be possible 
for both materials to have regions of elastic and plastic 
deformation, or for the film to be completely plastic 
while the substrate remains elastic. Eventually, the film 
yields completely, and the plastic zone penetrates well 
into the substrate. The stress-strain fields for the various 
situations can be obtained using the methods of Hill [ 16]. 
although the existence of the different deformation 
regimes complicates the anatys~s, as be now show. 

3.1. Elastoplastic substrate 
Let us begin by considering the simplest case, where 

the whole of the film, and the substrate out to a radius 
cs, are plastic. The fundamental equation which deter- 
mines the stress field in the spherical geometry is [16] 

da, 2 ( a 0 - a , )  
- (5) 

dr r 

where a, and ao are the radial and tangential principal 
components of the stress tensor, both functions of the 
radius r only. Symmetry requires the remaining princi- 
pal stress a~ to be equal to 00. The Tresca condition for 
plastic yield requires that o0 - ar = Y, where Y is the 
appropriate yield stress. This criterion s~mplifies the 
analysis, although the yon Mises criterion would per- 
haps be more realistic. The two criteria, however, usu- 
ally lead to similar results. 

For plastic deformation, eqn. (5) gives the stress field 

0, = 2 Y l n  r + K (6) 

whereas for elastic deformation the equivalent general 
solution is [23] 

A 
a, = ; 3 + B  (7/ 

and 

A 
Oo = 2r 3 b B (8) 

where K, A and B are constants. 
Imposing continuity of o, at r = a, t and c s gives the 

following equations: 

- p  = 2Yrln a + K r  

2Yrln t + K r =  2Ysln t +Ks  

2 Y s l n c s + K s  As = ~ + Bs 
Cs 3 

(9) 

(1o) 

( l l )  

where the subscripts f and s, denoting the film and 
substrate respectively, have been added to the various 
constants. 
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Continuity of  ao at r = cs similarly gives 

As 
2Yslncs+Ks+ rs=~c3+B~ (12) 

so that 

As= - ~ rscs 3 (13) 

We also impose a boundary condition of  zero radial 
stress as r ~ m,  so that B s = 0. Combining the above 
equations yields an expression for the pressure in terms 
of the plastic state: 

p = 5 Y ~ +  2Y~ln + 2 ( Y f -  Ys) In (14) 

In order to determine cs, we need to consider an 
incremental displacement field 8u(r), and a correspond- 
ing change 8cs, in the substrate plastic zone radius. The 
following equation for the volume strain is valid every- 
where: 

d(6u) 2 8u 
8 E r + S e 0 + 8 % -  dr ~ r 

1 - 2v 
- E (Sa, + 8 o "  0 + S a , )  (15) 

with appropriate  values of  parameters.  The strain incre- 
ments have been related to 8u in the usual way. In 
t < r  <cs ,  we find, using eqns (6), (11) and (13) that 

dr + r - ~7-~ - (16) 

where v = 8u/8cs. For  the elastic region in r > cs, we 
have 

5~o v ScS_ = Y~(l + vS) ( cz _ c 3  ) 
= r Es ~-gSc s ~-~Su (17) 

so that, to first order in Ys/Es, 

(1 + vs)Ys cs 2 
v = Es r 2 r > cs (18) 

Now eqn. (16) can be solved, again to first order in 
YJEs, with continuity at r = cs, to yield 

3 Y s ( 1 - v s )  cs 2 2 Y s ( 1 - 2 v s )  r 
(19) V-- Es r 2 Es q '  

which is similar to a result obtained by Hill for an 
uncoated spherical cavity [16]. 

A similar procedure leads to an equation for v in 
a < r  < t, using eqns. (6), (10), (11) and (13): 

( dv 2v 6( 1 -- 2vf) Y_fv Ys + _ _  . (20) 

+ Ef r t dr r Cs 

The solution for v in this region, with suitable continu- 
ity at r = t, again to first order in Y~/E~, is 

3 Y s ( 1 - v s )  G 2 2Y~(1-2vr )  r 

Es r 2 Er cs 

----'-~12Yst3 f l  -- 2vf 1 --_2vs' ] 

+ csr-" \ Ef E s ] 
(21) 

So, applying this solution at r = a, where 8u = 8a, and 
letting the increment 8a become small, gwes an equa- 
tion for da/dcs, which can be solved to give the ratio 
es/a required m eqn. (14). The complete solution is 
complicated, but to first order in Ys/Es the result is 

( ~ ) 3 = { 3 Y s ( 1 - - - - v s ) f l - - ( ~ ) 3 1 + ( a s y ;  -'  
Es [ - -  (22) 

\cs/  J 

where as is the value of a at which c s = t  and the 
substrate just becomes plastic. For  c s >> t > as, this gives 
simply 

3 = 3Ys(1 -Vs )  

which, Interestingly, does not depend on the properties 
of  the film. The pressure in the cavity, which is iden- 
tified as the hardness of  the f i lm-substrate  composite, 
is therefore 

+  n(t) 
for the elastoplastlc substrate regime. The first term 
corresponds to the hardness of  the substrate [17], and 
the second is the effect of  the film. 

The solution holds as long as cs > t. This condition 
can be translated into a lower limit for the cavity radius 
a, using eqn. (23), although this introduces some error 
since that result is valid only for cs >> t. 

3.2. Elastoplastic film 
Secondly, let us consider the regime where the sub- 

strate is completely elastic, but the film is plastic within 
a radius cf (of < t) and elastic beyond. We use the same 
methods as above. Stress fields analogous to eqns. 
( 6 ) - ( 8 )  can be constructed for the various regions: 

I 2 A Y f l n r + K f a < r < c f  (25) 

O-r = .~ Bf cf < r < t (26) 

L 
As 
~S r > t (27) 

Demanding continuity of  ar at r = cf and t, together 
with that of  cr 0 at r = cf, provides three equations 
hnking the five unknown quantities. The cavity pressure 
is now given by 

p =2 yr+ 2 Y r l n ( ~ ) _  Bf (28) 
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revolving the unknowns Bf and % These are found by 
considering an incremental displacement field 8u. Start- 
mg from eqn. (15), together with eqns. (25)-(27), it 
can be shown that 

dr' 2v' 6Yf(1-2vf)(V'r 1 1 dBr~ 
dr + - - q  (29) r -E7 cr 2 Yr dc, ] 

for a < r < cr, with v ' =  6u/6cr. In the elastic regions, 
however, v' can be found directly: 

Yf ( l+vr )  Cf 2 ( 1 - 2 v r )  dBr 
v ' =  , ~ - - -  r (30) 

Er r- Et dcf 

for cr < r < t, and 

( l+v~)dAs  1 
v ' =  2E~ dcr r z (31) 

for r > t, both to first order in Ys/E~ or YdEr. Requir- 
ing continuity for v' at r = t, and using Af+ Bft 3 = At, 
we find that 

dBf cf 2 Yf[( 1 --~'Vs)/g s -- ( 1 -~- vf)/Ef] c? 

d c f = G 7  ~ =  ( 1 - 2 v f ) / E f + ( l + v s ) / 2 E ~  t -S (32) 

again to first order in Y/E. Using this result, v' can be 
found in a < r < cf by solving eqn. (29) and demanding 
continuity at r = Cr. The solution for v' at r = a then 
gives the following equation: 

da 3 Yt( 1 - vr) cr z 2 Yr( 1 - 2vf) a 

dc r Ef a 2 Ef Cf 

( 1 - 2v r )  cf 3 (  . a c r 2 ~  
+ T  t3 .1 +~r--~7,)O (33) 

The ratio cr/a tends to a constant when cr >> af, where af 
is the value of a at which the film just becomes plastic, 
and so, dropping small terms in eqn. (33), we have 

a 3Yf (1-vr )  c/  1--2VrG cf5 (34) 
cr - Ef a 2 Er tSa 2 

which gives, to first order in G, 

(_~)3 Ef . [  ( 1 -  2Yf)£ ( ~  3 ~'f ] 
= 3 ( 1 - v f ) Y f  I-~ -3(i--~OYf\t/ 3(1--vr)Y f 

(35) 

Finally, this result, together with an integrated form of 
eqn. (32), combines with eqn. (28) to give the cavity 
pressure p m the elastoplastic film regime: 

Er (1 + vr)Er (a ' ]  3 
p = ~ Yf[1 + I n ( 3 ( 1 - - v r ) y r ) ] - G  27(1 _vf )Zy  f \ t J "  

(36) 

Once again, the first term represents the hardness of the 
film material, and the second corresponds to the effect 
of the underlying substrate. The above solution holds 
as long as c r < t. This corresponds to an upper limit for 

the cavity radius a, using eqn (35), although again this 
introduces a slight error. 

We therefore have two expression~ tot the cavlt? 
pressure, valid for two ranges of cavity radius, an 
elastoplastic film solution, eqn. (36), for small radm 
and an elastoplastic substrate solution, eqn. (24), for 
large radii. The two approximate ranges of validity 
which have been identified may or may not overlap 
This is partly because approximations have been made, 
but mostly because there are two further elastoplasuc 
regimes which have not been considered In the case of 
a soft film on a hard substrate, there will be a regime 
where the film is fully plastic, but the substrate remains 
elastic for a range of  cavity radius a. For a hard film on 
a soft substrate, there mxght be a range of a where both 
materials develop plastic zones which are separated by 
a region of elastically deformed film material. I do not 
propose to treat these regimes here, partly because of 
their complexity, and partly because the two solutions 
given above provide an adequate description of the full 
behavior, as we shall find in the next section. 

4. Application to coated substrates 

4.1. Mapping geometries 
The application of stress-strain solutions for the 

spherical cavity to the case of plane surface indentation 
necessarily involves some modification of the geometry. 
The reason why the cavity solution is useful is that it is 
often found in indentation tests that the displacements 
are radial, at a sufficient distance from the centre of the 
indentation, and that the plastic zone, at least for the 
case of a bare substrate, is approximately hemispherical 
[24, 25]. Both these features exist in the solution to the 
cavity problem. The fundamental differences between 
the two situations are the presence of the free surface, 
and the shape of the indenter. However, the success of 
the spherical cavity models suggests that these differ- 
ences do not spoil the analogy, at least for hard sub- 
strates. 

The main uncertainty in applying the cavity model to 
the indentation of bare substrates is in identifying the 
inner radius a Two approaches have been used. John- 
son [17] took a to be the radius of the indentation 
impression at the surface, for a conical or wedge inden- 
ter. The hemisphere of material beneath the indenter 
within this radius was taken to behave like a fluid under 
a hydrostatic pressure. An alternative approach, sug- 
gested by Chiang et al. [18], is to identify a with the 
radius of a hemisphere which has the same volume as 
the indentation. This implies that the displacements at a 
large enough distance away from the centre of the 
indentation do not depend on the indenter shape, but 
only upon the indented volume. The underlying impli- 
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cation is that the radius of the plastic zone is controlled 
by the total plastic work done, which depends on the 
indented volume but not on the shape. There is some 
evidence to support this conjecture [18]. 

The approach of Chiang et al. is used here, so that 
the radius a is related to the depth of indentation d 
according to 

a = d(½ tan 2 ~b)1/3 (cone) (37) 

o r  

a = d ( 2  tan 2 1~)1/3 (pyramid) (38) 

where q~ is the semi-included angle of a conical inden- 
ter, or half the angle between opposite faces of a 
pyramidal indenter. 

The remaining geometrical question concerns the ra- 
dius t. The approach which seems most sensible is to set 

t = a + h sin ~b (39) 

where h is the thickness of  the film. The motivation for 
this choice is to keep the thickness of  the film the same 
in the two geometries, as illustrated in Fig. 3(b). 

The ratio t/a is now written, for a pyramidal inden- 
ter, for example, as 

t h sin q~ 
- = 1 + ( 4 0 )  a d (2/7z)1/3 tan2/3 q5 

which can be inserted into eqn. (24) or eqn. (36) to 
obtain p, which is identified as the composite hardness 
as a function of indentation depth d for a given film 
thickness h. These expressions will be tested in the next 
section. 

4 2. Compar&ons with other models and experiment 
For  small h/d, eqn. (40) together with eqn. (24) gives 

H H [-2Dh-~ DZh23d 2 (h3)]~3 H ~ = H ~ + (  f -  s)L t-O (41) 

where D is the expression (sin ~b)/[(2/r01/3 tan2/3 ~b] in 
eqn. (40), and the approximation H ~ 3 Y  has been 
used. This expression corresponds in form to the 

Substrate 

(a) (b) 

Fig. 3 (a) Geometry of coated spherical cavity, and (b) relation to 
coated plane surface geometry 

I ! 

J6nsson-Hogmark  model, eqn. (2). The coefficients of 
the h/d and (h/d) 2 terms in the square brackets in eqn. 
(41) are, however, 0.393 and 0.115 for q~ = 6 8  °, com- 
pared with 0.146 and 0,005 respectively for Hr>> Hs in 
eqn. (2). The version of the volume mixture law given 
in eqn. (4) lacks a term in h/d, but the equivalent 
coefficient of the (h/d) z term is 0.759. Numerically, the 
predictions of the area and volume mixture models 
show similar behaviour, with the greatest differences at 
small indentation depths [10]. We now compare the 
J6nsson-Hogmark  model and the coated cavity model 
in a particular case. 

Laursen and Simo [4] used a finite element numerical 
approach to study the indentation of  coated surfaces 
indented by conical indenters with an apex angle of 136 ° . 
They studied films of aluminium on silicon and silicon 
on alumlnium and the material properties used are given 
in Table 1. The points m Fig 4 are representative of their 
depth-dependent hardness calct,kmons for a 1 gm coat- 
ing of  sihcon on alumlnium. =he J6nsson-Hogmark  

TABLE 1 Material properties used in ~he various calculations 

Material E Y v Reference 
(GPa) (MPa) 

Aluminmm 75 9 485 0 33 [4] 
Silicon 127 4410 0 278 [4] 
Nackel-boron alloy 100 1280 0 36 [26, 27] 
SAE 1018 steel 200 200 0 3 [27] 
Chromium 279 400 0.21 [6, 27] 
AISI 52100 steel 200 217 0 30 16] 
High strength, low 

alloy (HSLA) steel 200 170 0 30 [6] 
Stainless steel 200 630 0 30 [6] 
Copper 130 310 0 343 [6, 27] 

14 

f f 
/ ~ - -  equation (24) I C~ / t 

12 -  ~ / ~ equation (36) I \ J • hn,te e~ement resuRs - -  - -  C, / t 
• \ L - - -  Jonsson-Hogm~k model - -4  

\ ,. 

y~ 

/ ~ t- 1 

2 -  

film tluckrcss 1/Ja-a 

0 i ' ' t ~ ' i 0 
O 0  0 2  Or4 0 '6  018 110 1 2  1 4  116 1 8  2 0  

mdentat ,on dep th / / zm  

Fig 4 Hardness of alumlnium coated with sdicon for a' range of 
indenter depths, comparing the fimte element calculations [4] with the 
coated cavity model and the area mixture law [6] Plastic zone sizes 
against penetration are also shown 

1 0 -  
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model predictions for Hf>> Hs are shown as a broken 
curve (short dashes). The broken curve (long dashes) 
and full curves are the predictions of the coated cavity 
model for the elastoplastic substrate (eqn. (24)) and 
elastoplastic film (eqn. (36)) regimes respectively 
The model gives better agreement than the J6nsson- 
Hogmark model, especially for the depth corresponding 
to the transitlon between regimes. At larger depths, 
however, the hardness is overestimated. 

Each coated cavity model solution is shown for a 
range of depths corresponding to the conditions cs >/t 
and ct ~< t which are attached to each case. The evolu- 
tion of the plastic radii, normalized by t, according to 
eqns. (23) and (35), is also shown in Fig. 4. The ranges 
overlap in this example. In reality, a more complicated 
elastoplastic behaviour occurs near the cross-over, and 
eqns. (24) and (36) are not valid there, but the two 
curves shown provide an adequate description of the 
hardness dependence, and a more detailed consider- 
ation of the intermediate situation is not justified. 

The numerical indentation of a 1 lam alumimum film 
on a silicon substrate compares less well with the coated 
cavity model. The appropriate hardness solutions given 
by eqns. (24) and (36) are shown in Fig. 5 for this case 
and are compared with the finite element results. The 
ranges for the two solutions do not overlap in this case. 
The model predicts too high a hardness for most of  the 
range of depths. The reason for this ~s that the soft 
aluminium does not deform under indentation in the 
manner assumed in the model, instead it flows outwards 
and upwards around the indenter to produce a pile-up. 
The transition from radial flow to this sort of flow, 
better modelled by the slip-line field solution [28], is 
well established [17] For such a deformation pattern, 
the hardness is approximately equal to three times the 
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yield stress. Yield of the harder substrate does not 
occur until the indenter has penetrated the film, the film 
material deforming to produce a bulge at the surface. 
The composite hardness is best modelled in this situa- 
tion by an area mixture law, but based on indenter 
penetration of the film rather than the geometry used 
by J6nsson and Hogmark (i.e. more hke Fig. 2 than 
Fig. 1). For conical or pyramidal indenters, such a 
model predicts that 

for d > h and Hc = Hf otherwise. The dotted curve in 
Fig. 5 shows the predictions of this model, with Hf 
given by 3 Yf [28], and H s given by the first term in eqn. 
(24). It provides a much better fit to the finite element 
results than the coated cavity model does, although 
again the tendency is to overpredict the hardness as the 
indentation depth increases. 

It should be noted that the aluminium was allowed to 
harden in the simulations of Laursen and Simo. This 
cannot be catered for in the cavity model since the 
materials are taken to be elastic, perfectly plastic; al- 
lowance for hardening would, however, worsen the fit 
to eqn. (42). 

Lebouvier et  al. [26] have developed a two-dimen- 
sional rigid-block model to describe the indentation of 
a coated substrate and have carried out a programme 
of indentation measurements to test their conclusions. 
The data can also be used to test the coated cavity 
model. We concentrate on the measurements made for 
a coating of a hard nickel-boron alloy on softer SAE 
1018 steel. However, ref. 26 did not provide complete 
material properties, only the ratio of yield stresses, 
which is all that is needed in the rigid-block model. 
Estimates of the remaining parameters are gaven in 
Table 1. A comparison of measured and predicted 
hardnesses, for various ratios of coating thickness h to 
pyramidal indenter impression semiwidth w =  d tan ~b, 
is shown in Fig. 6. The predictions shown are not very 
sensitive to the choices of material properties. The 
model provides a reasonable description of behavlour 
for this case, although for deep penetrations the hard- 
ness is again overestimated. The J6nsson-Hogmark 
model provides a better fit for large indentation depths 
but underpredicts in the intermediate range. 

A larger set of measurements of the hardness of coated 
substrates was used by J6nsson and Hogmark [6] to test 
their model. Various substrates were given 1 ~tm 
chromium coatings and tested with a pyramidal inden- 
ter. In each case the film was harder than the substrate. 
The material properties are given in Table 1 and the 
predicted and measured hardnesses, for various penetra- 
tions, are shown in Fig. 7. The model is reasonably 
successful in accounting for the behaviour, although 
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there is once again a tendency to overpredict the hard- 
ness for deep indentations. The results may be com- 
pared with Fig. 9 in ref. 6. 

An even wider data set has been reported in ref. 10, 
describing titanium nitride and tungsten-t i tanium car- 
bide coatings on a variety of substrates. However, 
Burnett and Rickerby [10] found that the volume mix- 
ture model, which they used to interpret the results, 
required empirical modification to include a strong 
indentation size effect (ISE) arising from the coating 
materials. The study of these results using the coated 
cavity model would therefore not be useful at this stage, 
since an allowance for the ISE is not yet included. The 
materials involved in the other tests discussed in this 
section are metalltc, which are generally less affected 
by the ISE. Consideration of the data in ref. 10 must 

await the inclusion of the ISE within the coated cavity 
model. 

5. Discussion 

Thts paper has sought to estabhsh a rigorous basis 
for predicting the hardness of a coated substrate, as a 
function of the coating thickness and the indentation 
depth. The approach used is indirect, in that first a 
related problem with a different geometry is solved, 
namely the expansion of a spherical cavity w]thin a 
bulk material, with a coating of a different material at 
the interface. Both materials are taken to be elastic, 
perfectly plastic. This analysis uses the methods of Hill 
[16], who treated the uncoated spherical cawty prob- 
lem. His stress-strata solution was subsequently used, 
with some success, to describe the indentation of un- 
coated surfaces [15, 17-20]. The natural development 
which has been followed in this paper is to use the 
solution to the coated cavity problem to model the 
hardness of coated plane surfaces. 

The material displacements in spherical cavity prob- 
lems are radial, by symmetry. The reason for the success 
of Hill's solution seems to be that the displacements 
produced by the indentation of plane surfaces, at a 
sufficient distance from the indenter surface, are approx- 
imately radial in many cases. This provides the crucial 
similarity between the cavity case and the plane surface 
case. 

The indentation displacement pattern is rather differ- 
ent when the ratio of Young's modulus to yield stress 
exceeds a certain threshold. The flow of material away 
from the indenter is then no longer radial but is directed 
more towards the free surface, producing a pile-up. This 
is the point at which cavity models cease to be useful in 
describing surface indentation, and a slip-field model of 
indentation becomes more appropriate [28]. The hard- 
ness is then approximately equal to three times the yield 
stress. Spherical cavity models are therefore not suitable 
for describing the indentation of soft materials (low 
yield stress) and this restriction holds both for soft 
substrates and for surfaces coated with soft films. 

Nevertheless, in most practical cases, the film mate- 
rial is hard, often a ceramic, and a cavity model is then 
a suitable description. Furthermore, a soft substrate, 
which would normally pile up, might deform radially 
under the constraint of a hard surface film, which 
would make a cavity model appropriate even for these 
materials. In the calculations described in the last sec- 
tion, the predictions of the coated cavity model were 
used irrespective of the ElY ratio of the material 
However, if E s is subject to an upper limit equal to 3 Ys, 
then some of the predicted hardnesses in Figs 4 -7  
would be reduced slightly. 
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The stress-strata solutions found here for the case 
of an expanding coated spherical cavity have been 
apphed to the indentation of plane coated substrates 
by making two geometrical correspondences, both of 
which are subject to some uncertainty Adjusting these 
assumptions ~s possible and might improve the fit to 
experiment, but at present the following procedure is 
followed. Firstly, the indentation volume, which de- 
pends on the shape of the indenter, is set equal to the 
volume of a hemisphere, which identifies the cavity 
radius m the analytic solution. Secondly, the thickness 
of the film when pressed into the substrate is identified 
with the thickness of the coating in the cavity problem. 
The relationship between the cavity pressure and the 
cavity size is then translated into a indentation depth 
dependence for the coated substrate hardness. Several 
such relationships hold valid for various ranges of 
depth, corresponding to various elastoplastic regimes in 
the cavity problem. Equations (24) and (36) are two 
such expressions, describing situations where a single 
plastic zone is contained within an elastic zone, with the 
edge of the plastic zone lying in the substrate and film 
respectively. These two provide a reasonable coverage 
of the entire range of indentation depths. 

The theory has been compared with other simple 
models. Analytically, the solutions differ in detail com- 
pared with the area [6] and volume [7-11] mixture 
models, but similarly shaped curves of hardness against 
depth are obtained. For shallow indentations, the ap- 
parent hardness ~s close to that of the film, but beyond 
a critical penetration, equal to about one fifth of the 
film thickness, the hardness changes rapidly towards 
that of the substrate. In contrast with both the area and 
the volume mixture models, however, the solutions are 
based upon a rigorous theoretical development, albeit 
for a spherical geometry 

No attempt has yet been made to include the indenta- 
tion size effect within the model. This depth dependence 
of hardness, even for uncoated substrates, has yet to 
be explained satisfactorily and has only been included 
empirically within the area and volume models. A similar 
procedure may be necessary for the coated sphere model. 

The predictions of the model have been compared 
with data from several indentation studies, both numer- 
ical and experimental. In general, the model can ac- 
count for the hardness trends for hard films on soft 
substrates but not vice versa. This is because the as- 
sumption of radial displacements, implicit vathin cavity 
models, fails for softer materials which can bulge at the 
free surface in a coated plane surface geometry. 

The model assumes elastic perfectly plastic deforma- 
tion behaviour for the materials involved, which can be 
unrealistic. A development to include power law hard- 
ening may be possible, perhaps using an approach 
similar to that of Matthews [29]. 

6. Conclusions 

The problem of the expansion of a pressurized 
sphere, coated with a film material, within a bulk 
substrate material, has been solved, assuming elastxc, 
perfectly plastic material properties. This sxtuation has 
been used to represent the indentation of a coated plane 
surface, and the analogy has yielded a model of the 
depth dependence of the hardness of the coated surface. 
The theory predicts a critical indenter penetration up to 
which the hardness is reasonably unaft~cted by the 
substrate properties, but beyond which the hardness 
changes rapidly. The model provxdes a better descrip- 
tion of hard films on soft substrates than vice versa 
The present model is more soundly based in theory 
than some other models but shows many of the same 
features and provides a good description of finite 
element calculations and experimentally measured 
hardnesses. At present, it lacks an allowance for the 
indentation slze effect, although it may be possible to 
include this empirically. Using this model, it should be 
possible to interpret the loading curves arising from the 
indentation of coated substrates, and to determine the 
film parameters required to provide the desired hard- 
ness in a particular apphcation 
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