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1 Introduction

The auditory system is a focus of considerable attention for physiologists
and physicists alike. Over the last 200 years the passage of sound through
the outer ear, mapping of its’ frequency on the basilar membrane (in the
cochlear) and signal transduction by hair cells has been well established.
The electrical signals produced are passed - in broad terms - to the brain,
and the result is our perception of sound, or hearing. However, at higher-
level stages of this neural process our understanding decreases rapidly.
Herein lies the biological problem; our current knowledge of how the brain
processes auditory signals is just the tip of an iceberg.

The region of the brain responsible for receiving and processing auditory
signals is called auditory cortex. Recent experimental work [5] has been per-
formed on rodents to examine auditory cortical neurons by characterizing
their Spectrotemporal Receptive Fields (STRFs). These are matrices whose
elements quantify how important a sound at particular frequency and time
is to the firing of the neuron. Their construction implies a linear neuron
function. Computational techniques are integral to this work; the STRF is
estimated from the data through linear regression and Bayesian techniques
can then employed to improve these estimates [9]. While STRFs calculated
in this manner are in themselves interesting, the most significant result of
this work was found through the use of a cunning statistical method to
measure the linearity of these neurons, or equivalently, how well the STRF
accounts for the ”signal power”. It is found that this is no higher than
∼ 40% [10]. A non-linear model for neurons in the rodent auditory cortex
is therefore required.

In this essay I will first review the work summarised above, discussing how
computational techniques can help with experimental design, data analy-
sis and, ultimately, suggest the direction for future work. I will then outline
a possible extension to the model - namely, the use of the sigmoid function
as an output non-linearity (see right) - and describe how this would be im-

the sigmoidplemented and tested within the framework of Generalized linear models.
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2 A review of the work

A complete description of the human brain is not within our grasp - it con-
tains around 1012 neurons and each of these form many connections with
other neurons. However, the brain is now known to be highly compart-
mentalised, and this has allowed research to be focussed on particular brain
functions. While a full understanding of these is thought to be a long way
off, progress is being made and advancements to medical science can be
made en route. The auditory system is no different; we would certainly like
to know more about it - particularly the rôle of the auditory cortex - and in
studying it may shed more light on deafness, tinnitus, etc.

This section is a largely review of recent interdisciplinary work [5, 9, 10]
on the primary auditory field (AI) and anterior auditory field (AAF) of ro-
dent auditory cortex. These areas are known to be tonotopic, but individual
neuron function has not been determined.

2.1 Receptive fields & experimental design

Receptive fields are a very useful concept in sensory neuroscience. They aim
to provide a description of what a neuron is responsive to. In hearing,
spectrotemporal receptive fields (STRFs) are arrays of weights that - when
presented with an auditory stimulus - give a prediction for the neuronal
output. Writing the STRF as D, the predicted neuron output as ŷ and the
input as X,

ŷ(t) = ∑
τ, f

Dτ f Xt−τ, f (1)

where τ measures the time before t, the neuron firing time, and f is the
stimulus frequency. It is important to note that this estimate is entirely lin-
ear; the STRF describes a linear neuron.

Receptive field calculation requires experimental work. Armed with suf-
ficient stimulus-input and neuron-output data, mathematical regression
methods can be employed to establish the STRF that links them. Obvi-
ously, this has to be done on an organism with a functioning auditory sys-
tem1. The mouse is a good candidate, and has been extensively studied;
powerful genetic tools exist for manipulating its neural circuitry and five
distinct areas of its auditory cortex have been identified. Rats were also

1which is preferably both 1. good and 2. not too dissimilar to the human system
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used in these studies. Advances in experimental technique have allowed
the activity of single (or small groups of) neurons to be monitored using
electrodes. Their cortical location can be readily identified. Generating
sounds is relatively easy; high-grade speakers can present the rodents with
acoustic stimuli. All that is left to do is decide what stimulus to play.

The experimental method outlined above is both expensive and time con-
suming. The physiological conditions required can only be maintained for
around half an hour; after this, the results become meaningless and this site
cannot be used again. There is need to gather as much data useful to STRF
calculation in the limited time available. A good stimulus should, there-
fore, be information-rich, i.e. sample the entire rodent frequency range
throughout its presentation. However, the parameter space for the regres-
sion method also needs consideration; time and frequency need to be di-
vided into discrete bins since there is a trade-off between STRF ”resolution”
and the computational cost of STRF calculation.

These considerations have inspired the creation and use of the Dynamic
Random Chord (DRC), a kind of ”musical white-noise” in which tone pulses
are played at random times, frequencies and intensities. Each of these
quantities are discretized; frequencies are in semitone (1/12 octave) bins2

and time bins are chosen as 20ms3. Each pulse lasts for 20ms and is ramped
up and down by a 5-ms cosine gate. With some basic programming, a
computer can produce a non-repeating DRC stimulus to be presented con-
tinuously to the rodent’s auditory system. An algorithm for generating a
simple DRC is given in the appendix.

2.2 Data analysis & STRF estimation

To perform any regression or inference, there is a critical requirement for
sufficient data. Also, the data needs to representative of the system, and
effort should be made to reduce the effect of noise on the estimate, which
is ubiquitous in this type of experimental measurement. In light of this, the
DRC described above is played for 60 seconds (3000 time bins) and then
repeated4, with no gap between repeats. The neuronal response can thus

2two frequency ranges were explored separately due to practical limitations; 2-32kHz
(48bins) and 25-100kHz (24 bins)

3a shorter time bin would increase computational demand but may also approach the
timescale for neural reset after firing

4N=20 for the low- f DRC presentation and N=10 for high- f

4



be summed over the repeats, the average being indicative of the firing rate
for each time bin. This dampens the effects that experimental noise has on
the estimate. Crucially, repeating also facilitates segregation of signal and
noise components of the response, which will be discussed in section 2.4.

The STRF to be determined is chosen span a lag-time of 300ms (15 time
bins) - acoustic history beyond this limit is deemed irrelevant to the neu-
ron. It is discretized into either 48 (low- f ) or 24 (high- f ) frequency bins;
each frequency range has their own STRF. Thus, we have a ”worst-case”
of 15 × 48 = 720 weights to be determined, and ' 3000 input-&-output
values. There is sufficient data for STRF determination via regression.

The computational problem to be solved is multiple linear regression, and
is usually performed by a process known as Iteratively re-weighted least squares
(IRLS). The large parameter space required to produce a useful STRF makes
this process computationally expensive; a stochastic hill-climbing algorithm
may be required to improve speed and ensure convergence in the search
for the global minimum of this large-dimensional space. The basic idea,
however, is to minimize the sum of least-squares (S) between the actual
neuronal response and that predicted by the STRF (see 1):

S = ∑
t
‖y(t)− ŷ(t)‖2 (2)

where t runs to 60s in 20ms steps. The weights that make up the STRF are
varied until the algorithm converges on its best estimate. Improvements
to this are discussed in the next section; on its own, this method is fairly
crude. However, insights into the basic form of the STRF can still be made
(these are confirmed with the more advanced methods):

• The areas studied (AI and AAF) have a tonotopic arrangement. This
was reflected in the results; generally, individual neurons respond
best to a bandwidth around a characteristic centre, fc.

• Temporal structure was also revealed; the STRF contains an inhibitory
peak which switches to an excitatory peak at around τp=50ms (AAF)
and τp=80ms (AI), suggesting that the area AAF is specialised for
faster temporal processing.

Interestingly, this structure is similar to that of receptive fields commonly
found in vision[2], which are often approximated by the Gabor function:

G(x,y) ∼ cos(x− φ) exp−x2+y2
. (3)
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This is plotted in figure 1 and shows the basic features of the STRF that
were found.

Figure 1: The Gabor function, G(τp, fc) ∼ cos(τp − τ) exp−(τ−τp)2+( f− fc)2

2.3 Improving the estimates

Bayesian techniques are becoming increasingly popular in application to
problems where something is learned, predicted or inferred from data,
particularly in the presence of noise which corrupts the data and makes
the model susceptible to overfitting. The simplest of these is maximization
of the likelihood of the data given the parameters and assumptions made.
If we assume Gaussian output noise of constant variance σ2 and nothing
about the parameters, then maximizing the logarithm of the likelihood is
equivalent to the minimizing the sum of least-squares. This is shown in the
appendix.

However, this framework can be far more powerful than standard regres-
sion methods if we can place so-called ”priors” (probability distributions)
on the weights. Recently, techniques have been developed to impose spar-
sity and smoothness constraints on arrays of weights that are inferred from
noisy data. Both these conditions are desirable in STRF calculation; we
want our model, while explaining the data, to be as simple as possible (Oc-
cam’s Razor) and expect that weights have similar values to their neigh-
bours. These methods, known as Automatic Relevance and Smoothness
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Determination respectively, are summarised below.

Automatic Relevance Determination (ARD). This was originally devel-
oped by David Mackay in 19925 [7] and sets out to identify (and zero) ir-
relevant weights. ARD is achieved by initially modelling each weight as
a zero-mean Gaussian, with hyperparameters (to be determined) specifying
how far the weight is allowed to vary from zero. The ”evidence” is op-
timised through a tricky integration6 over the weights, and the hyperpa-
rameters are found as a result. Any hyperparameters beneath a specified
tolerance level have their weight set to zero and deemed irrelevant to the
model – changing this weight from zero has no affect on the output. In this
way, a set of pseudo-priors can be specified for the weight matrix, with irrel-
evant weights zeroed. While this is computationally costly7, it frequently
improves the result of the subsequent maximization.

Automatic Smoothness Determination (ASD). This is a novel technique
[9] that has been developed - in light of the success of ARD - to hyperpa-
rameterise the ”smoothness” of the STRF across the (unrelated) dimensions
of time and frequency. As in ARD, the evidence is optimized to determine
the hyperparameter values. Likelihood maximization then takes place un-
der a framework that effectively constrains weights to vary smoothly on
scales specified by the hyperparameters.

As might be expected, these disparate approaches can be combined into a
potentially powerful technique. Loosely speaking, ASD is called first to de-
termine smoothness scales, and ARD is then set to work on this pre-defined
basis. This is referred to as ASD/RD.

2.4 How linear are the neurons?

To quantify the success of the methods described above, some statistical
effort is called for to segregate the noise component present in the STRF
estimates, which is symptomatic of overfitting. Then, the degree to which
the STRF accounts for the data - or, equivalently, the linearity of the neuron -
can be determined. A novel method has been developed [10] to achieve just
this, which works under the assumption of trial-independent, zero-mean

5but not named until 1996 by R. M. Neal, who extended the technique
6often made tractable using Laplace’s method or through a Monte-Carlo approach [8]
7the cost associated with each iteration in the optimization scales as d3 where d is the

number of weights [8]
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Gaussian noise. This allows the so-called ”signal power” to be written in
terms of the response only. The signal power captured by the STRF esti-
mate can then be quantified using 9-from-10 cross validation on the data.
The performance for each method of STRF estimation is tabulated below.

STRF estimation method Signal power captured

ML 12%
ARD 26%
ASD 27.5%
ASD/RD 30%

The ability of the STRF to predict test data improves with the use of more
sophisticated optimization techniques; sparsity and smoothness are hence
valid constraints to impose. However, ASD/RD (the most successful of the
techniques) only manages to capture 30% of the signal power. Even when
using a similar measure which considers that the STRF could be inaccurate
(the predictive power), this maximum is only increased to ∼ 40%. These con-
clusions suggest either 1. that a non-linear model is required to describe
the rôle of auditory cortical neurons in the rodent or 2. that the DRC is
somehow producing this effect. However, low percentages have also been
reported using natural sounds as stimuli [6] which gives the second of these
arguments less weight.

A suggested extension - to incorporate non-linearity into the neuronal model
- is discussed in the next section.
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3 A suggested experiment

The data analysis described above strongly suggests that a non-linear model
for rodent auditory cortical neurons is required. This section motivates the
use of the sigmoid as an ”output non-linearity” to try, and proposes its im-
plementation in the framework of Generalized Linear Models.

3.1 The sigmoid as an output nonlinearity

The sigmoid function is used widely in both physical and biological sys-
tems8 to model switch-like behaviour between two levels (off→ on). It is
also commonly chosen as the ”activation” in simple neural models [8]. Its
mathematical form is

y =
1

1 + exp−a.x (4)

where a is a parameter governing the ”softness” of the switching. This is
shown in figure 2, below.
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Figure 2: The sigmoid function, for values of ”a” ranging from 0.5 to 5.

The sigmoid is piecewise linear except in the case a = ∞, where it repre-
sents a perfect switch. It has a point of inflection at x = 0 and its value is
bounded by 0 and 19. The low-x response performs soft rectification (which
gets harder with increasing a) and the high-x behaviour is akin to satura-
tion. Both of these properties are realistic for a model neuron; is it neuro-
physiologically reasonable for inputs below a certain threshold to excite no
response and for sufficiently large inputs to be essentially equivalent.

8e.g. in 2-level systems of statistical physics, or as an approximation to the Hill function
in e.g. allosteric interactions

9the neural output data will need normalising to a maximum of 1 for comparison
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Machens et al [6] used the criteria of saturation and rectification to fit a
static nonlinearity to their rat data, but reported only small improvements
in model performance. However, this approach is model-based; it uses the
STRF to generate the input (i.e. as in equation 1) to be run through the non-
linearity. Their result discourages the use of a sigmoid under this method,
but, things can be done differently. We appeal to a framework under which
the ”receptive-field” weight matrix (strictly, not the STRF) is learned from
the data in a form of regression through the sigmoid output non-linearity. This
is shown schematically below.

Xt
-

σ2

ς
(sigmoid)

- ŷt

Wτ f
min-LS algorithm

To implement this model, we turn to a branch of mathematics known as
Generalized Linear Models.

3.2 Generalized linear models

The theory of Generalized Linear Models (GLMs) has been advanced over
the last few decades to deal with regression-type problems where the model
contains - despite its name - some non-linear function relating input and
output. The language of GLMs is outlined below, as described in Dobson
[4].

The model requires two ingredients: an equation linking the output and
input variables - which need not be linear - and an expression for the prob-
ability distribution of the output, which must be from the exponential fam-
ily of distributions (Normal, Poisson and Binomial distributions are all in
the family). There exists a wide range of computer packages that can, from
this starting point, estimate parameters (through either least-squares or
maximum likelihood), check model adequacy (e.g. by calculation of resid-
uals) and interpret the results through hypothesis testing, etc.

What all of this means may become clearer with an example. The simplest
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GLM is of the form

E(Yi) = µi = xT
i β ; Yi ∼ N(µi, σ2) (5)

i.e. the expectation value of the output, E(Y) is constructed in a linear fash-
ion from the inputs x and parameters β, and the probability distribution is
Normal about this mean due to a uniform Gaussian noise. This is known as
a Normal Linear Model. The model used in STRF calculation is an example
of this special case10:

E(Yt) = µt = ∑
τ, f

Dτ f Xt−τ, f ; Yt ∼ N(µt, σ2) . (6)

To use the sigmoid as an output non-linearity, however, we need to harness
the full power of GLMs. These extend to models with a non-identity link
function, g, where

g(µi) = xT
i β . (7)

In the model proposed, the sigmoid takes as its input the linear construc-
tion

Θt = ∑
τ, f

Wτ f Xt−τ, f

where the weight matrix is given the symbol W to distinguish it from the
STRF. It then returns expectation value for the output, E(Yt). The operation
of the output non-linearity can be written as

E(Yt) = µt =
1

1 + e−Θt
(8)

and this can be re-cast into GLM form by multiplying through by the inverse-
sigmoid (labelled ς−1 for convenience):

ς−1(E(Yt)) = ς−1(µt) = ∑
τ, f

Wτ f Xt−τ, f ; Yt ∼ N(µt, σ2) . (9)

A few things are worthy of note here. Firstly, nothing is assumed about the
form of the weight matrix W; it is ”learned” from the data. This makes the
approach completely removed from that in [6], where the STRF is taken as
given and attempts are made to fit a non-linearity to the data (which, inci-
dentally, turns out vaguely sigmoidal). It is also important to note that there

10to get an exactly equivalent form the STRF and input each need their rows pasted to-
gether to form a single vector

11



is no explicit parameter which governs the sigmoid switch behaviour (’a’
in equation 4); the sharpness is governed only by the values of the weights.
This means there is no immediate danger of non-identifiability11 which can
be problematic when inferring input non-linearities [1].

3.3 Suggested implementation

I propose that the sigmoid-output model - cast as a GLM in equation (9)
above - should be tested on rodent neural data obtained from the DRC ex-
periments. With the weight matrix being learned through the sigmoid in
this way, it is hoped that this model of the auditory cortical neuron func-
tion will perform better than the linear STRF. However, for a significant
improvement to be made (i.e. beyond the ∼ 5% increase in signal power
accountability reported using an output-fit approach [6]), weight matrices
determined under the GLM would need to capture some crucial structure
that the STRFs are lacking. The questions that this experiment would aim
to answer are:

• If this extra structure is present, what is its form and what are the
implications for the rôle of the auditory neuron?

• Will the sigmoid-GLM procedure be able to find this structure alone,
i.e. without the help of Bayesian techniques? Under GLMs, methods
for assigning priors to model parameters have to rely on sampling
[3]; the integrals used in ARD and ASD are feared to be intractable.
Further work in this area could inspire a more complete Bayesian-
GLM framework.

• Extension: is there a need for some input non-linearity, too? Candi-
dates might take the form of AND/OR logical conditions - AND might
demand, for example, that two distinct regions in the weight matrix
be stimulus-activated for the neuron to fire.

If the model is successful, it should then be extended in application to other
species. The neurological implications of this model - and its performance
under distortion - could then be considered in more depth.

11e.g. if Θ = aW.X then the transformation a → a.λ, W → W/λ results in the same
output
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4 Summary

Neuroscience is still young. Much is yet understood about how the brain
works – the high-level neural basis of hearing is one such example. How-
ever, progress is being made. I have discussed how computational and
experimental techniques can be married together to tackle the problem of
”working blind”, and that this synergistic approach can lead to suggestions
for the direction of future research.

Conclusively, neurons in the rodent auditory cortex have a non-linear function.
In light of this, I have suggested a non-linear model to be investigated.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A Appendix

A.1 The Dynamic Random Chord

Algorithm 1 (Octave code - a simple dynamic random chord)

dur=0.02; # 20ms time-bin

t=0:(1/fs):dur; # fs is appropriate sample rate (high)

for i=0:dur:t_max # time index, 20ms steps

for j=f_min:f_step:f_max # frequency index

d=rand();

if d<lim # lim controls the sparsity of the DRC

d=0; # set (most) entries to zero

endif

a(i,j)=d*sin(2*pi*j*t); # amplitude set to random value

# pure tone of j Hertz for 20ms

endfor

endfor

wavwrite(’DRC.wav’, a, fs); # save the dynamic random chord

In practise, the amplitudes are also discretized, frequency bins are spaced
as 2n/12 and a more efficient algorithm would not run ”element-by-element”
in this way. A graphical representation of a DRC generated with the above
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algorithm (lim = 0.85) is plotted below; black bars are pure tones of zero
amplitude.

Figure 3: A graphical representation of an example DRC

A.2 Equivalence of Least Squares and Maximum Log-Likelihood

The STRF model (1) with constant Gaussian output noise gives the follow-
ing likelihood:

y|X ∼ ∏
t

exp−(y(t)−ŷ(t))2/2σ2

and the logarithm of this is simply

∑
t
−(y(t)− ŷ(t))2/2σ2.

Maximising this expression is achieved through finding the point where its
derivative (with respect to the parameters) is zero; since the noise term is
constant, the equivalence of the result with that of the least squares method
(2) can be made.

The logarithm of the likelihood is often preferred to the likelihood itself
as it generally takes more handleable (i.e. non-infinitesimal) values.
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