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 Kernel Regression in Empirical
 Microeconomics

 Richard Blundell

 Alan Duncan

 ABSTRACT

 We consider the implementation of Kernel methods in empirical microeco-
 nomics with specific application to Engel curve estimation in the analysis
 of consumer behavior. A set of recently developed tests for the parametric
 null hypothesis against a nonparametric alternative are discussed and im-
 plemented for the Engel curve application. We also consider semi-para-
 metric estimation in partially linear models and the case of endogenous
 regressors. Gauss-based software is available for each technique imple-
 mented in the paper.

 I. Introduction

 The obsession with linearity in empirical economic analysis clearly
 does not stem from any strong prior of economic theory. To quote McFadden's 1985
 presidential address to the Econometric Society: "[parametric regression] interposes
 an untidy veil between econometric analysis and the propositions of economic the-
 ory." Nonparametric regression analysis seems to provide a compelling alternative
 to linear regression, allowing the data to determine the "local" shape of the condi-
 tional mean relationship.

 Richard Blundell is a professor of economics at University College London and the Institute for Fiscal
 Studies and a coeditor of the Journal of Human Resources. Alan Duncan is a lecturer in economics at
 the University of York and the Institute for Fiscal Studies. The authors are grateful to James Banks, Hi-
 dehiko Ichimura, Gauthier Lanot, Arthur Lewbel, Joris Pinske and two anonymous referees for helpful
 comments. The financial support of the ESRC Centre for the Micro-Economics Analysis of Fiscal Pol-
 icy at IFS is gratefully acknowledged. Household data from the FES made available by the CSO
 through the ESRC Data Archive has been used by permission of the HMSO. Neither the CSO nor the
 ESRC Data Archive bear responsibility for the analysis or the interpretation of the data reported here.
 The usual disclaimer applies.
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 Symposium: Blundell and Duncan 63

 The paper begins with models in which the relationship of interest is given by

 (1.1) y = g(x) +

 where e is defined such that E(elx) = 0. For example, in Engel curve analysis y
 would represent the expenditure or expenditure share on some good or group of
 goods and x would represent total disposable income or the total budget. Nonpara-
 metric regression analysis avoids the imposition of any parametric assumptions on
 the conditional mean function g(x). Typically x is univariate, as in Engel curve exam-
 ple, although multivariate relationships are relatively easily estimated using standard
 nonparametric regression techniques.

 Engel curve analysis provides a particularly useful illustration of the advantages
 of nonparametric regression and will be used as a running illustration throughout
 this paper. It has been at the center of applied microeconomic research on consumer
 behavior since the early studies of Working (1943) and Leser (1963) uncovered the
 stability of the expenditure share-log income specification for food expenditures.
 Recently attention has focused on Engel curves that have more variety of curvature
 than is permitted by the Working-Leser form underlying the Translog and Almost
 Ideal models of Jorgenson, Christensen, and Lau (1975a) and Deaton and Muellbauer
 (1980a) respectively. This reflects growing evidence from a series of empirical stud-
 ies that suggest quadratic logarithmic income terms are required for certain expendi-
 ture share equations (see, Banks, Blundell, and Lewbel 1997; Atkinson, Gomulka,
 and Stem 1990; Bierens and Pott-Buter 1990; Hausman, Newey, and Powell 1995;
 Hardle and Jerison 1991; Lewbel 1991; Blundell, Pashardes, and Weber 1993).

 Our aim in this paper is to take the reader through the implementation and estima-
 tion of various aspects of Kernel regression. The focus will be restricted to kernel
 regression although nearest neighbor, series and spline techniques are now all com-
 monly available alternative techniques (see Hardle 1990 for a comprehensive re-
 view). There will be some discussion of local linear regression techniques introduced
 recently by Fan (1992). All the techniques discussed are implemented on the expen-
 diture survey data source using the GAUSS-based interactive software NP-REG.
 This software is available on request.'

 In general, it may be useful to consider a parametric specification against a non-
 parametric alternative. We consider and implement a set of recently developed tests
 for this hypothesis (see Ait-Sahalia, Bickel, and Stoker 1994; Ellison and Ellison
 1992; Hardle and Mammon 1993; Zheng 1996). These turn out to give similar and
 sensible results in our application to the analysis of alternative parametric forms of
 the Engel curve relationship. We also consider the case of semiparametric estimation
 in partially linear models. This is important in cases where it is felt that ceratain
 regressors are likely to enter with a simple linear form. In this situation we can use
 the Robinson (1988a) (see also Ai and McFadden 1997) approach to semiparametric
 regression. This turns out to be an effective mechanism for analyzing demographic
 variables in our Engel curve application. Within the overall semiparametric frame-
 work we also consider the case of endogenous x. This extension is developed by
 adapting the Holly and Sargan (1982) augmented regression approach to the partially
 linear regression context. In the application using income to instrument total expendi-

 1. Requests should be made to Alan Duncan (asdl@york.ac.uk).
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 64 The Journal of Human Resources

 ture, it is found to have an important impact on the curvature of the Engel curve
 relationship. The tests for a parametric specification against a nonparametric alterna-
 tive are also implemented in this partially linear semiparametric context.

 The rest of the paper is organized as follows. In Section II we review briefly the
 technique of kernel density estimation, before moving in Section III to a discussion
 of kernel regression methods. We describe the form and properties of the standard
 Nadaraya-Watson kernel estimator, including a discussion of the sampling distribu-
 tion of the local regression estimator-and a summary of proposed tests for assessing
 parametric models against nonparametric alternatives. We present an application of
 the Engel curve analysis of food expenditure and alcohol expenditure for a large
 sample of households in the British Family Expenditure Survey. These two commod-
 ities display very different nonparametric Engel curve shapes and therefore provide
 an excellent example of the benefits of implementing nonparametric methods in mi-
 croeconomic data. In Section IV attention is turned to semiparametric regression
 and a method to correct for endogeneity in the context of kernel regression. Section
 V considers the advantages of local polynomial regression and finally Section VI
 concludes.

 II. Kernel Density Estimation

 The general form for the kernel density estimator of a P-dimensional
 variable x is

 (2.1) fH(x) = - KH(xi - X)
 i=1

 where KH(x) = det(H)-~ K(H-1' x) for some multivariate kernel function K(x) and
 for a given P X P matrix of bandwidths H. The simplest multivariate kernel is a
 product of univariate kernels of the form K(x) = IIP= k(xp), and a typical matrix
 of bandwidths would be either diagonal or related to the sample covariance S of the
 variable x, such that H = h . S112 for some positive scalar h.

 When x is univariate, the kernel density estimator (2.1) reduces to

 (2.2) fh(X) Kh(Xi - x)
 ni 1

 where Kh(x) = h-~ k(x/h) for a scalar bandwidth h.2 For notational simplicity we
 concentrate here on univariate estimation techniques, although multivariate exten-
 sions are straightforward. From (2.2) we see that the kernel density estimator evalu-
 ated at x for a given bandwidth is simply a weighted average of the raw data, with
 greater weight given to observations close to the point at which the density is esti-
 mated. The kernel function itself is symmetric, integrates to unity, and is typically
 continuously differentiable.
 Common choices for the univariate kernel function include the Gaussian in which

 k(u) = 1/xl2 exp(-u2/2) and the Epanechnikov in which k(u) = 3/4(1 - u2)

 2. See Rosenblatt (1956) and Parzen (1962).
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 Symposium: Blundell and Duncan 65

 (l ul I 1) where 1(.) is the unit indicator function. Notice that the Epanechnikov
 kernel truncates the points local to x when calculatingf(x) whereas the normal kernel
 uses all observations in the calculation of the conditional mean at each point. As a
 consequence, truncating the normal kernel to reduce the computational burden is
 common. Useful discussions of other kernel functions can be found in Hardle and

 Linton (1994) or Silverman (1986).
 The choice of bandwidth h is crucial to the appearance and properties of the final

 density estimate. While the choice can be a purely subjective one, it is common to
 apply certain rules of thumb. One such rule, as discussed in Silverman (1986), sets
 bandwidths to minimize the Mean Integrated Squared Error (MISE) of the form

 (2.3) MISE(f(x)) = JE[{(x) - f(x)}2] w(x) dx

 where f(x) denotes the "true" density and w(x) denotes some trimming function.
 If the true density of x is normal then the optimal MISE choice for h in estimating
 the density f(x) is given by 1.06 C5n-115.

 An Application

 As an illustration of kernel density estimation we can turn to the total budget variable
 in our Engel curve analysis. Typically the total expenditure variable, log transformed,
 is often supposed to have a normal cross-section distribution. To see the usefulness
 of the kernel method Figure 1 presents kernel density estimates of log expenditure for
 a group of around 1,000 households from a single year of the UK Family Expenditure
 Survey. These are married couples with no children so as to keep a reasonable degree
 of homogeneity in the demographic structure (see Banks, Blundell, and Lewbel
 1997). A Gaussian kernel is used, with the bandwidth chosen according to Sil-
 verman's rule of thumb for a normal density.

 The results are interesting, showing that it is relatively difficult to tell apart the
 nonparametric density from the fitted normal curve which is also shown. The bivari-
 ate kernel density plot in Figure 2 is also based on a Gaussian kernel with optimal
 bandwidth according to Silverman's rule for a normal density. The joint nonparamet-
 ric density of food expenditure share and log total expenditure again seems close to
 bivariate normal, with strong negative correlation.

 III. Kernel Regression

 The aim of kernel regression is to replace g(x) in (1.1) by a local
 estimator of the conditional mean

 (3.1) E(ylx) = yf(ylx)dy

 where f(ylx) is the conditional density of y. Noting thatf(ylx) = f(x, y)/f(x) and
 f(x) = f(y, x)dy, we can rewrite (3.1) as

 (3.2) E(y x) = yf(y, x)dy
 Jf(y, x)dy
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 Figure 1
 The Density of Log-Expenditure, FES 1980-82
 Source: Banks, Blundell, and Lewbel (1997).

 The objective of kernel regression is to replace the numerator and denominator in
 (3.2) with estimators based on locally weighted averages. Specifically, by analogy
 with (2.2), we can write the Nadaraya-Watson kernel estimator of (3.2) as3

 n

 3yiKh(Xi - X)

 (3.3) gh(x) =
 n fh(X)

 or equivalently
 n

 (3.4) gh(x) = Y- 'ih(X)
 i=1

 when expressed in terms of a weight function Rih(x) of the form

 Kh(Xi - X)
 (3.5) nTih(x)= K -

 Kh(xj - x)
 j=1

 3. See Nadaraya (1964) and Watson (1964).
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 Figure 2
 Bivariate Kernel Density: Food Share and Log Expenditure

 Figures 3 and 4 present Kernel regressions for the Engel curves for the food share
 and the alcohol share in the FES data respectively. Each figure includes pointwise
 95 percent confidence bands at the decile points in the log expenditure distribution
 and also plots a quadratic polynomial regression. The estimation of confidence bands
 is discussed below. These figures are drawn from the Banks, Blundell, and Lewbel
 (1997) study, where a number of other commodities are considered.

 The following two theorems, described more fully in Hirdle (1990) and Hirdle
 and Linton (1994) set out conditions for the consistency and asymptotic normality
 of the estimator (3.3);

 Theorem 3.1

 For kernel weights K(-) and bandwidth h = h(n) such that
 A.1: SIK(u)ldu < o,
 A.2: limlul,o uK(u) = 0, and
 A.3: h -> 0 and nh -> oo as n -> oo,

 then gH(x) -> g(x) at every point x at which g(x) and 62(x) are continuous, andf(x)
 is continuous and positive.

 Theorem 3.2

 For kernel weights K(.) and bandwidth h= h(n) satisfying A.1 to A.3 and
 A.4: JIK(u)l2+Idu < oo for some TI > 0,
 A.5: lim hSn < oo,
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 Figure 3
 Nonparametric Engel Curve: Food Share
 Source: Banks, Blundell, and Lewbel (1997).

 xx
 X X

 x x
 X

 ..' me- kernel regression
 a' * *.. polynomial regression

 X x X pointwise confidence bands
 A I I I I I i I I I

 5 5.5
 Log Expenditure

 I  I I
 mm~~~

 6 6.5 7

 Figure 4
 Nonparametric Engel Curve: Alcohol Share
 Source: Banks, Blundell, and Lewbel (1997).

 0.7 -

 0.6 -

 0.5 -

 0.4 -

 o 0.3

 0.2

 0.1

 O-

 3  4
 I

 7

 0.08 -

 0.06-

 o 0.04 -

 0.02 -

 0
 I I I
 3.5 4 4.5

 n n

 II

 I1

 W

 n 0

 I,

 * .a .
 I

 x ,

This content downloaded from 
��������������86.250.10.7 on Wed, 31 Jul 2024 10:48:33 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Symposium: Blundell and Duncan 69

 then at every point x at which g(x) and f(x) are twice continuously differentiable
 and positive, we have that

 (3.6) (nh)12 gh(x) - gN), -h2B(x)

 where V(x) = (2(x)CKlf(x), CK is a kernel-specific constant (= K2(u)du) and B(x)
 is a nondisappearing bias.

 We need to be able to place a confidence band around the estimated regression
 curve. A simple way to do this is to choose k fixed points in the x distribution-
 say the decile points. Under certain regularity conditions (see Hardle 1990), the
 theorem above allows us to derive pointwise confidence bands of the form

 (3.7) {(nh)l/2 - - h2B(xj /2 N(0, 1).

 Although the Working-Leser linear logarithmic formulation appears to provide a
 reasonable approximation for the food share curve, distinct nonlinear behavior is
 evident for alcohol. For the alcohol share a quadratic logarithmic share model would
 seem to fit quite well, confirming the results in Banks, Blundell, and Lewbel (1997).
 That study also found considerable stability in these overall patterns across the time
 series of Family Expenditure Surveys.

 A. Average Derivative Estimation

 Economists are often interested in the "slope" of the regression line; that is, the
 marginal effects on the conditional expectation g(x) = E(ylx) of a change in x.
 Following Stoker (1991), the kernel regression function (3.4) may be rewritten as

 (3.8) gh(X) = Ch(X)Ifh(X)

 where

 n

 (3.9) ch(x) = n-1 ' yi- Kh(xi - x),
 i=1

 and, provided that the underlying kernel K(.) is first-order differentiable, the local
 slope estimator g (x) can be derived as

 _(3.9_) gf h- (x) (3.9) -'(x) = c -h(X)
 fh(x) fh(X)

 For a nonparametric regression, the slopes (3.9) vary over the range of x. Typically,
 however, interest centers on the nature of the "average" slope 6 = E[g'(x)] of a
 nonparametric line.
 One solution is to estimate directly the average slope 6 = E[gH(x)] as a simple
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 (trimmed) sample average, either through the direct average derivative estimator
 n

 (3.10) 6DA = n-1 Ii -g(Xi),
 i=1

 or the indirect average derivative estimator
 n

 (3.11) IA = n-1 Ii * [-fh(xi)/fh(Xi)] Yi,
 i=1

 where Ii = l(fH(xi) > b) for some small b such that b -- 0 as n -> oo. Noting that
 the scales of either 6DA or 86A are not directly comparable to that of the standard
 functional derivative, Stoker (1986) discusses an alternative approach to the estima-
 tion of average derivatives based on an assumption that the conditional expectation
 E(y Ix) is related to x only through the linear index xT1. In particular, if the regression
 functional can be represented as a single index of the form

 (3.12) E(ylx) = g(x) = M(xTP)

 then the average slope

 (3.13) 6 = E[g'(x)] = E[M'(xT3)] ? 1

 identifies the vector P up to scale. We may absorb the scale of M(.) through the
 normalization E(M') = 1. By defining m(s) = M(ys) for y = E[M'(xTI)]-1, the coef-
 ficients 6 of the scaled index model

 (3.14) E(ylx) = m(xT6)

 may be compared directly with those of a linear model.4
 One can estimate 6 as the linear coefficients from an instrumental variables regres-

 sion of y on x using lh(x) = -f;(x)Ifh(x) as instruments, giving an indirect slope
 estimator 68s (compare Stoker (1991) p. 63) of the form

 n \-1 n

 (3.15) 8s = Ii h(Xi) '(Xi ) Ii lh(Xi) (Yi ).
 i=l i=1

 B. Choice of Bandwidth

 A central issue in nonparametric estimation by local smoothing is the choice of
 bandwidth. With a fixed sample the size of bandwidth h determines the degree of
 smoothing and is therefore of crucial importance for the appearance, interpretation
 and properties of the final estimate. The choice of bandwidth can be a purely subjec-
 tive choice, it can relate to some "rule of thumb," or the choice can in some sense be
 "automated" by data-driven cross-validation techniques. The degree of smoothing
 corresponding to a given bandwidth parameter h is clearly not independent of the

 4. See Hardle-Stoker (1989) or Stoker (1991) for a detailed discussion of the asymptotic distribution of
 various average derivative estimators.
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 kernel function. The relationship between bandwidths in each case is proportional,
 however, and a useful list of bandwidth "exchange rates" is given in the Hardle
 and Linton paper.

 The choice of bandwidth involves an implicit tradeoff between the variance and
 bias of the kernel estimator gh(X) of g(x). As Hardle and Linton (1994) note, the
 mean squared error (MSE) of gh(X) may be approximated via (3.6) by

 (3.16) MSE[h(x)] = E[(gh(x) - g(x))2] (nh)-V(x) + h4B2(x).

 So the contribution to the MSE from the variance (squared bias) term decreases
 (increases) as h increases, and the bandwidth that minimizes the theoretical MSE
 may be derived straightforwardly as

 V(X 1/5
 (3.17) hsE n<-I/5

 The general procedure for automated bandwidth selection in practical kernel regres-
 sion essentially involves choosing that h that minimizes a sample approximation to
 (3.16). The simplest approach is termed the resubstitution method, whereby h is
 chosen to minimize an objective function of the form

 w(xj)(yj - gh(X))2 n
 j=l

 for some trimming function w(xj). For technical reasons, however, the minimizing
 value of h from resubstitution is downward biased. If, for example, we use a kernel
 K(.) supported on [-1, 1], then this objective function reduces to zero for any h
 smaller than the closest two data points in the sample.5

 To correct this bias, two main methods are typically employed. The first uses a
 cross-validation (CV) statistic formed from a weighted sum of squared deviations
 of each yj from its conditional mean seen as a function of h;

 I n

 (3.18) CV1(h) = - ) w(xY)(y - h,j(X))2
 n '-s

 j=1

 where the conditional mean ghj(Xj) in each case is calculated by leaving out the jth
 observation. That is,

 ghj(Xj) = Yi- ni(xj)
 i?j

 where

 i;J(X) Kh(Xi - Xj)

 Kh(Xk - Xj)
 k?j

 5. We thank an anonymous referee for this observation.
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 Figure 5
 Sensitivity to Bandwidth Selection: Alcohol Engel Curve

 By "leaving-out" the jth observation, the cross-validated bandwidth can be demon-
 strated to be asymptotically optimal with respect to the MSE.
 Alternatively, one can employ a penalty function to correct the downward bias
 associated with the resubstitution method. The objective function for this second
 approach takes the general form

 (3.119) C ) (Xj)) (h) (3.19) CV,2(h) - w(xj)(yj - h(Xj))2 'p(jh)
 n  j=l

 where p(.) is a penalty function that stops h from becoming too small. Common
 choices for the form of the penalty function include p(u) = (1 - u)-2 leading to a
 bandwidth selected by Generalized Crossvalidation (see Craven and Wahba 1979),
 p(u) = exp(2u) for Akaike's (1970) Information Criterion, or p(u) = (1 - 2u)-1
 for Rice's (1984) bandwidth selector. Again, it can be demonstrated that bandwidths
 chosen using objective (3.19) are asymptotically optimal.

 Figure 5 investigates the sensitivity of the alcohol Engel curve to variations in
 the bandwidth. The overall shape of the kernel regression is little affected by varia-
 tions in the choice of kernel or smoothing parameter at or close to the cross-validated
 level. When the bandwidth becomes too large, however, the curve flattens.6 Thus,
 care must be taken when choosing bandwidths subjectively.

 An attractive addition to this method of choosing the bandwidth is to allow the
 bandwidth to vary with the density of x. In the application below this is shown to

 6. In the limit, the Nadaraya-Watson curve becomes horizontal (at the mean) as h becomes arbitrarily
 large.
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 smooth out "wiggles" very effectively in areas where the density of x is sparse. If
 we let

 Ki- where 0 c p < 1,

 for some pilot bandwidth hp with the normalisation factor q1 given by

 ln fhp(xj)
 ln = J

 n

 then the adaptive kernel estimator takes the form
 n

 (3.20) ft(x) = 1 K((xj - x)/1h)
 n j=1 hAj

 for the density estimator with a corresponding form for the conditional mean. (See
 Silverman 1986, for a discussion of the adaptive kernel method).

 Figure 6 gives an example of the usefulness of the adaptive kernel. The upper
 panel plots a nonparametric food Engel curve using the Nadaraya-Watson method,
 while the lower panel plots the same, but using adaptive kernel techniques. Notice
 how the "wiggles" in the Engel curves that appear at the edges of the x distribution
 are essentially ironed out by adaptive estimation.

 C. Comparisons with Parametric Specifications

 Inference in nonparametric regression can take place in a number of ways. Perhaps
 the most obvious and the one at the frontier of current research activity is to use
 the nonparametric regression as an alternative against which to test a parametric
 null. Recent work by Ait-Sahalia, Bickel, and Stoker (1994), Ellison and Ellison
 (1992), Hardle and Mammen (1993), and Zheng (1996) is particularly notable.

 Ait-Sahalia et al. derive asymptotically normal statistics for the comparison be-
 tween a nonparametric estimate gh(Xi) and some parametric estimate 6(xi, 3) of a
 regression curve based on a simple squared error goodness-of-fit statistic

 (3.21) = ('h(xi) - (xi, ,))2Wch(Xi)),
 n

 a linear transformation of which is shown to converge at rate nhM/2 to a limiting
 normal distribution with mean zero and estimable variance.

 An alternative approach by Zheng (1996) uses the kernel method to construct
 a moment condition that can be used to distinguish the parametric null from the
 nonparametric alternative. The test centers around a matrix Wn of kernel weights
 with typical elements

 wiU = l(i ?j). K ((xi -))

 where 1 () represents the indicator function. Given a set of parametric residuals e
 = y- 6(xi, [3), the statistic
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 Figure 6
 Normal Kernel and Adaptive Kernel Regressions: Food Engel Curves

 (3.22) T =

 i=Z1 wj

 i=l j=1

 j:n n 2w(e ~I/2

 i=l j=1

 is shown to be asymptotically standard normal under the null and consistent against
 all deviations from the parametric null, with a convergence rate nhM2.
 The test proposed by Ellison and Ellison (1992) has a structure almost identical
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 Figure 7
 A Residual Based Specification Test: Quadratic Model for Alcohol Share

 to that of Zheng (1996), and differs only in the replacement of the residual cross-
 product term (e,ej)2 by the variance estimator &2 = 1/n ? e2. The authors quote a
 convergence rate that depends on the properties of the kernel weight matrix.7

 D. An Application

 As an illustration it is interesting to focus on a comparison of the nonparametric
 Engel curve estimates in Figures 3 and 4 with the simple second order polynomial
 fit given by the dashed line in the figures. Some guide to the reliability of this approx-
 imation can be drawn from the pointwise confidence intervals (evaluated at the mid-
 points of each decile) also shown in the figures. It is only where the data are sparse
 and the confidence bands relatively wide that the paths diverge. This can be examined
 more closely by a residual-based analysis adopted in Banks, Blundell, and Lewbel
 (1997). In Figure 7 a nonparametric regression curve is presented between the residu-
 als from the parametric quadratic regression curve and the log total expenditure-
 the Xi variable in the above kernel regressions. A well-specified parametric model
 should display a line through zero. This is seen to be pretty much the case for our
 quadratic logarithmic Engel curve for alcohol shares.
 For a more formal comparison, we derive Average Derivative estimates and a
 range of nonparametric specification tests for the food and alcohol Engel curves

 7. Other important tests are given in Bierens (1990) and Wooldridge (1992).
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 Table 1

 Nonparametric Estimates: Food and Alcohol Engel Curves

 (1) Food (2) Alcohol

 6is -0.1341 0.0004
 (0.0073) (0.0020)

 3OLS -0.1394 0.0009
 (0.0071) (0.0034)

 H0: linear parametric form
 C2 0.014 5.910

 [0.906] [0.015]
 XEE 0.014 6.973

 [0.906] [0.008]

 X2BS 1.679 4.633
 [0.195] [0.031]

 Ho: quadratic parametric form
 %2 0.004 0.404

 [0.948] [0.525]
 XEE 0.004 0.481

 [0.948] [0.488]

 X2BS 0.567 0.526
 [0.451] [0.468]

 Notes: Data are drawn from the 1980-1982 Family Expenditure Surveys. Nonparamet-
 ric estimates based on a Gaussian kernel with bandwidths chosen by Least Squares
 crossvalidation [compare equation (3.18)]. Average derivatives 6/s are indirect slope
 estimates [compare equation (3.15)]. For crossvalidation and ADE calculations, data
 are trimmed to exclude the smallest 2 percent of estimated densities. All estimates and
 specification tests are generated using the GAUSS-based software package NP-REG
 (see Duncan and Jones (1992)).

 shown in Figures 3 and 4. These are presented in Columns 1 and 2 of Table 1.
 The specification tests also reported in the table compare the general nonparametric
 regressions with both linear and quadratic parametric forms, using the statistics of
 Zheng (1996) (denoted 2), Ellison and Ellison (1992) (denoted X2E) and Ait-Sahalia,
 Bickel, and Stoker (1994) (denoted %ABS). All are distributed as a chi-squared under
 the null. We are unable to reject linearity for the food share equation, whereas for
 alcohol share, a quadratic specification enjoys a good degree of empirical support.

 IV. Semiparametric Regression and Endogenous
 Regressors

 A. Partially Linear Models

 It will often be useful to consider extensions of (1.1) that include a linear parametric
 part. In Engel curve analysis, for example, it may be useful to add a set of demo-
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 graphic characteristics to the conditional mean specification. The regression specifi-
 cation now has the form

 (4.1) y = g(x) + z'y + E

 in which z'y represents a linear index in terms of a finite vector of observable exoge-
 nous regressors z and unknown parameters y. We assume E(E z, x) = 0 and Var(e z,
 x) = &2(z, x). This model is typically labeled semiparametric. It can be the case that
 the vector of coefficients y is the parameter of interest and an estimator of y is re-
 quired that is robust to an unknown form for g(x). Following Robinson (1988), a
 simple transformation of the model can be used to give an estimator for y. Taking
 expectations of (4.1) conditional on x, and substracting from (4.1) yields

 (4.2) y - E(ylx) = (z - E(zlx))'y + ?.

 Replacing E(ylx) and E(z x) by their nonparametric estimators, denoted m^h(x) and
 mh(x) respectively, the ordinary least squares estimator for y is In consistent and
 asymptotically normal.

 The estimator for g(x) is then simply

 (4.3) gh(x) = m(x) - m(x)'y.

 Because y converges at /n, the asymptotic distribution results for gh(X) remain unaf-
 fected by estimation of y and follows from the distribution of tm^(x) - mh(x).8

 B. Correcting for Endogeneity

 Suppose x is endogenous in the model (1.1) in the sense that

 (4.4) E(elx) ? 0 or E(yIx) ? g(x).

 In this case

 p

 gh(X) - g(x)

 so that the nonparametric estimator will not be consistent.
 However, suppose there exists a variable z such that

 x = cz + v with E(vlz) = 0.

 Moreover, assume the following linear conditional model holds

 (4.5) y = g(x) + vp + e

 with

 (4.6) E(elx) = 0.

 In this case the following semiparametric estimator above can be used to mimic the
 augmented regression approach developed by Holly and Sargan (1982). Note that

 8. Heckman et al. (1995) show this asymptotic distribution result can provide a poor approximation even
 in moderately sized samples, and implement bootstrap methods which perform well in Monte Carlo com-
 parisons. They also provide an asymptotic variance estimator which accounts for the estimation of y.
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 Figure 8
 Nonparametric Food Share by Family Size: Adaptive Kernel

 (4.7) y - E(yx) = (v - E(vx))p + ?

 The estimator of g(x) is given by

 (4.8) gh(X) = Mh (x) - m(x)p.

 In place of the unobservable error component v we use the first stage residuals

 (4.9) v = x - zft

 where fr is the least squares estimator of t. Because t and p converge at in, the
 asymptotic distribution for gh(x) follows the distribution of mY(x) - mv(x)p. More-
 over, a test of the exogeneity null Ho: p = 0, can be constructed from this least
 squares regression.

 Newey, Powell, and Vella (1995) have developed a fully nonparametric imple-
 mentation of this idea for triangular simultaneous equation systems of the type con-
 sidered here. They adopt a series approach to the estimation of the regression of y
 on x and v. This generalizes the form of (4.5) and allows an assessment of the additive
 structure.

 C. An Application

 To see the importance of a semiparametric transformation of the form described
 above, we now consider food and alcohol shares among a more heterogeneous group
 of married women with at least one dependent child. Figure 8 presents adaptive
 kernel regression lines for the food Engel curve across four different household types

 IIt

 kernel regression lines for the food Engel curve across four different household types
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 Table 2

 Nonparametric and Semiparametric Estimates: Food Engel Curves

 (1) (2) (3) (4)

 6Is -0.1341 -0.1441 -0.1087 -0.1396

 (0.0073) (0.0091) (0.0080) (0.0074)
 fOLS -0.1394 -0.1479 -0.1140 -0.1434

 (0.0071) (0.0069) (0.0071) (0.0069)
 k - 0.0229 - 0.0225

 (0.0032) (0.0033)
 ?8,v~ v- - -0.0361 -0.0062

 (0.0148) (0.0151)
 Ho: linear parametric form
 X2 0.014 0.164 0.003 0.171

 [0.906] [0.686] [0.991] [0.680]
 %EE 0.014 0.166 0.003 0.172

 [0.906] [0.684] [0.991] [0.678]
 XABS 1.679 0.772 0.741 0.675

 [0.195] [0.380] [0.389] [0.411]
 Ho: quadratic parametric form
 X2 0.004 0.142 0.001 0.149

 [0.948] [0.706] [0.991] [0.700]
 XEE 0.004 0.144 0.001 0.150

 [0.948] [0.705] [0.991] [0.698]
 XABS 0.567 0.448 0.185 0.375

 [0.451] [0.503] [0.667] [0.540]

 Notes: Data: 1980-82 Family Expenditure Surveys sample size 1,025. Nonparametric estimates based on
 a Gaussian kernel with bandwidths chosen by Least Squares crossvalidation [compare equation (3.18)].
 Average derivatives 8/s are indirect slope estimates [compare equation (3.15)]. For crossvalidation and
 ADE calculations, data are trimmed to exclude the smallest 2 percent of estimated densities. Parameters
 Yk and 6v are estimated by OLS (compare equation 4.2). All estimates and specification tests are generated
 using the GAUSS-based software package NP-REG (see Duncan and Jones 1992).

 split according to the number of children, and demonstrates a degree of heterogeneity
 in share equations sufficient to consider semiparametric estimation techniques.
 Following Robinson (1988) we examine the extent of misspecification in non-

 parametric Engel curves among households with at least one dependent child. The
 most general semiparametric specification controls both for the number of children
 nk in the household, and for potential endogeneity in log expenditure via first-stage
 residual v in (4.5). To calculate this residual the log of disposable income is used
 as the excluded instrumental variable. We write

 (4.10) y = g(x) + Yk * nk + p * v + E

 where y represents expenditure share and x denotes log real expenditure.
 Tables 2 and 3 present nonparametric average derivative estimates and specifica-
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 Table 3

 Nonparametric and Semiparametric Estimates: Alcohol Engel Curves

 (1) (2) (3) (4)

 gIs 0.0004 0.0018 -0.0150 -0.0100
 (0.0020) (0.0022) (0.0024) (0.0024)

 DOLS -0.0009 0.0005 -0.0162 -0.0113
 (0.0034) (0.0035) (0.0035) (0.0035)

 Yk - -0.0049 - -0.0038
 (0.0016) (0.0017)

 ?6b~v,- - 0.0213 0.0162
 (0.0073) (0.0076)

 H0: linear parametric form
 %2 5.910 6.384 5.677 6.502

 [0.015] [0.012] [0.017] [0.011]
 XEE 6.973 7.597 6.695 7.685

 [0.008] [0.006] [0.010] [0.006]
 XABS 4.633 4.297 11.609 8.696

 [0.031] [0.038] [0.001] [0.003]

 Ho: quadratic parametric form
 2 0.404 0.370 0.248 0.300

 [0.525] [0.543] [0.618] [0.584]
 XEE 0.481 0.443 0.294 0.356

 [0.488] [0.506] [0.58 [] [0.551]
 XABS 0.526 0.134 1.484 0.736

 [0.468] [0.715] [0.223] [0.391]

 Notes: as for Table 2.

 tion tests for food and alcohol share equations. The first columns of each table repro-
 duce the numbers in Table 1. Comparing this most general specification [marked
 (4) in Tables 2 and 3] with more restricted versions. Food expenditure share is esti-
 mated to increase with the number of children, with some evidence of endogeneity
 in log total expenditure. Compared with the most restrictive specification (1), the
 average slope of the food Engel curve becomes more negative when controlled for
 heterogeneity (2), and less so once corrected for endogeneity (3). In all specifications,
 we are unable to reject linearity. For alcohol share, the converse is true; alcohol
 expenditure decreases slightly as a share of total expenditure as the number of chil-
 dren in the household rises. The endogeneity correction typically forces the slope
 of Engel curve to be more negative. In line with Banks, Blundell, and Lewbel (1997)
 we find it important to include quadratic terms in log expenditure in the parametric
 alcohol share equation.

 A graphical comparison of the food and alcohol Engel curves under alternative
 specifications can be seen in Figures 9 and 10. Note that in all regressions the depen-
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 dent variable is normalized around k ? nk. For the second case, the impact of the
 semiparametric controls (for endogeneity in particular) is dramatic.

 V. Local Polynomial Regression

 The kernel regression method analyzed so far can be thought of fitting
 a sequence of local constants. Although this discussion has not focused on bias, the
 Nadaraya-Watson kernel estimator is only exactly unbiased when the function being
 estimated is a constant. Typically in economic applications there is better prior infor-
 mation on the shape of the curve. For example, in the food share Engel curve dis-
 cussed above, local linearity would clearly be a good approximation. For the alcohol
 share Engel curve, a local quadratic model would be appropriate. Fan (1992) derived
 the statistical properties of the local linear estimator which involves fitting a line
 locally. This is shown to be superior to the Nadaraya-Watson regression. Fan and
 Gijbels (1992) consider the case of local polynomial estimators. These are discussed
 in Hardle and Linton (1994). In an interesting paper, Linton and Gozalo (1996)
 discuss a related kernel nonparametric regression estimator that can be centered at
 any parametric regression model. It retains all the attractive features of the locally
 linear estimator but has especially good properties at or near the parametric model.
 This relates to the centering approaches taken in Ansley, Kohn, and Wong (1993) and
 Fenton and Gallant (1986) for spline regression and series estimation respectively.

 The Gonzalo and Linton estimator can be thought of as the minimizer of the
 following nonlinear least squares criterion

 (5.1) Sn(x, oc) {Yi - m(xi, (a)}2Kh(xi - x).
 ni=1

 for some parametric model m(xi, a). First S is minimized with respect to a, then
 for any &A

 (5.2) gh(X) = m{x, ,n(x)}

 is the estimator of g(x). Note that, in general, iterative methods are required to find
 gh(X) and &n(x). However, when the parametric regression function is linear in pa-
 rameters, then the minimisation problem has an explicit solution. Consider for exam-
 ple the parametric model m(Xi, Oa) = co + clx,i + a2 X2 + ... .+ aCp X zac where
 Zi = (1, Xi, x, .. ., xp) and c = (to0, ctl, C2 ... , ap)'. For any given h, the ao that
 minimizes (5.1) at x can be derived as

 (5.3) &n(x) Kh(Xi ) (Kh(Xi --) )' (zii)
 i=l i=1

 from which the local polynomial estimator gh(x) can be recovered through (5.2).
 Note that, when m(x, ao) = co, then gh(X) reduces to the Nadaraya-Watson estimator.
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 Figure 11
 Local Polynomial Regression: Food Shares

 Figures 11 and 12 compare Nadaraya-Watson regressions for food and alcohol share
 with local quadratic and parametric quadratic equivalents.
 A major advantage of this approach emerges when the parametric model is true
 or approximately true. Gonzalo and Linton show that if for some fixed a?, g(x)
 m(x, c?) for all x, then the highest order of the asymptotic bias of g(x) is arbitrarily
 small. This follows because the derivatives of all orders of g(x) - m(x, a?) with
 respect to x equal zero for all x. In fact parametric asymptotic theory applies straight-
 forwardly in this case.
 We may use cross-validation techniques based on (3.18) to automate the choice
 of bandwidths in local polynomial regression. To generate an appropriate leave-one-
 out estimator of g(x), note first that we may adapt (5.3) to give

 (5.4) &nJ(xj) = Kh(Xi - x,) (ZiZ) Kh(Xi - x) (ziYi)).

 This allows us to form the leave-one-out estimator

 (5.5) ^h (xj) = m{x, &, (xj)}

 at thejth data point xj. Minimizing (3.18) with respect to h using (5.5) gives a cross-
 validated bandwidth for local polynomial regression.

 Table 4 compares Nadaraya-Watson, local linear and local quadratic regressions
 in terms of their Mean Squared Errors

 MSE W MSE=- w(xj)(y- h(Xj))2
 j=1

 In all cases bandwidths are chosen by cross-validation. By way of comparison we
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 Local Polynomial Regression: Alcohol Shares

 also report MSE statistics for fully parametric models. Note how the "optimal"
 cross-validated bandwidths increase for both the food and the alcohol Engel curve
 examples as the degree of the local polynomial approximation increases, a result
 which one might expect if the local polynomial regression estimator reduces bias
 relative to the Nadaraya-Watson estimator [compare Equation (3.17)].

 For the alcohol Engel curve, we see clearly the advantage of a local polynomial
 regression. Graphical evidence and specification test results from Table 3 suggest
 that the underlying Engel curve relationship for alcohol is quadratic in log expendi-
 ture, and Figure 12 supports this view. The fit of a local quadratic regression for
 alcohol (as measured by the MSE) dominates the local linear and Nadaraya-Watson
 curves at their respective cross-validated bandwidths.

 VI. Concluding Comments

 We have reviewed the techniques of density estimation and nonpara-
 metric estimation of the conditional regression function using kernel methods, and
 described recent developments in the fields of nonparametric specification testing,
 semiparametric estimation and local polynomial regression. An application to the
 Engel curve analysis of food expenditure and alcohol expenditure for a large expen-
 diture survey of households in the United Kingdom was presented. These two com-
 modities display very different nonparametric Engel curve shapes and therefore pro-
 vide an excellent example of the benefits of implementing nonparametric methods
 in microeconomic data.

 One aspect of our review has been on the implementation of a set of recently
 developed tests for the parametric null hypothesis against a nonparametric alterna-
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 Table 4

 Mean Squared Errors: Food and Alcohol Shares

 hcv MSE (hcv) MSELs

 Food Share

 N - W 0.1008 7.6367 X 10-3 1.0472 X 10-2
 LLR 0.2801 7.6248 X 10-3 7.6401 X 10-3
 LQR 0.5058 7.6288 X 10-3 7.6425 X 10-3

 Alcohol Share

 N - W 0.1759 1.8443 X 10-3 1.8610 X 10-3
 LLR 0.2145 1.8440 X 10-3 1.8636 X 10-3
 LQR 0.2932 1.8433 X 10-3 1.8456 X 10-3

 Notes: Data are drawn from the 1980-82 Family Expenditure Surveys. Nonparametric
 estimates based on a Gaussian kernel. N - W, LLR and LQR relate, respectively, to
 the Nadaraya-Watson, local linear and local quadratic regressions for food and alcohol
 shares. MSE (hcv) is the Mean Squared Error evaluated at the crossvalidation band-
 width. MSEts is the Mean Squared Error for a parametric (Least Squares) regression.
 For crossvalidation and MSE calculations, the trimming function w(x) is set to exclude
 the smallest 2 percent of estimated densities. Calculated using NP-REG.

 tive. These turned out to give similar and sensible results in our application to the
 analysis of alternative parametric forms of the Engel curve relationship. We consid-
 ered the case of semiparametric estimation in partially linear models. This is impor-
 tant in cases where it is felt that certain regressors are likely to enter with a simple
 linear form. We used the Robinson (1988) approach to semiparametric regression
 which turned out to be a very effective tool for analyzing demographic variables in
 our Engel curve application. We also described a technique to control the nonpara-
 metric conditional mean for endogenous regressors. This was developed by adapting
 an augmented regression approach to the partially linear regression context. In the
 application using income to instrument total expenditure was found to have an impor-
 tant impact on the curvature of the Engel curve relationship. The tests for a paramet-
 ric specification against a nonparametric alternative are also implemented in this
 partially linear semiparametric framework.
 Finally, we have presented an implementation of a local polynomial estimator as

 an alternative to standard Nadaraya-Watson methods. For our Engel curve examples,
 the local polynomial estimator supported large cross-validated bandwidths than the
 Nadaraya-Watson alternative, and typically improved the measured fit (according to
 an MSE criterion) at these optimal bandwidths.

 References

 Ai, C., and D. McFadden. 1997. "Estimation of Some Partially Specified Nonlinear Mod-
 els." Journal of Econometrics 76:1-37.

This content downloaded from 
��������������86.250.10.7 on Wed, 31 Jul 2024 10:48:33 UTC�������������� 

All use subject to https://about.jstor.org/terms



 86 The Journal of Human Resources

 Ait-Sahalia, Y., P. Bickel, and T. Stoker. 1994. "Goodness-of-Fit Tests for Regression Us-
 ing Kernel Methods." Mimeo. Cambridge: Massachusetts Institute of Technology.

 Akaike, H. 1970. "Statistical Predictor Information." Annals of the Institute of Statistical
 Mathematics 22:203-17.

 Ansley, C., R. Kohn, and C. Wong. 1993. "Nonparametric Spline Regression with Prior In-
 formation." Biometrika 80:75-80.

 Atkinson, A., J. Gomulka, and N. Ster. 1990. "Spending on Alcohol. Evidence from the
 Family Expenditure Survey 1970-1983." Economic Journal 100:808-27.

 Banks, J., R. Blundell, and A. Lewbel. 1997. "Quadratic Engel Curves and Consumer De-
 mand." Review of Economics and Statistics.

 Bierens, H. 1990. "A Consistent Conditional Moment Test of Functional Form." Econo-
 metrica 58:1443-58.

 Bierens, H., and H. Pott-Buter. 1990. "Specification of Household Engel Curves by Non-
 parametric Regression." Econometric Reviews 9:123-84.

 Blundell, R., P. Pashardes, and G. Weber. 1993. "What Do We Learn about Consumer De-
 mand Patterns from Micro Data?" American Economic Review 83:570-97.

 Craven, P., and G. Wahba. 1979. "Smoothing Noisy Data with Spline Functions: Estimat-
 ing the Correct Degree of Smoothness by the Method of Cross-Validation." Numerische
 Mathematik 31:377-403.

 Deaton, A., and J. Muellbauer. 1980. "An Almost Ideal Demand System." American Eco-
 nomic Review 70:312-26.

 Duncan, A., and A. Jones. 1992. "NP-REG: An Interactive Package for Kernel Density Es-
 timation and Nonparametric Regression." Discussion Paper W92/07, Institute for Fiscal
 Studies.

 Ellison, G., and S. F. Ellison. 1992. "A Nonparametric Residual-Based Specification Test:
 Asymptotic, Finite-Sample and Computational Properties." Mimeo. Cambridge: Harvard
 University.

 Fan, J. 1992. "Design-Adaptive Nonparametric Regression." Journal of the American Sta-
 tistical Association 87:998-1004.

 Fan, J., and I. Gijbels. 1992. "Variable Bandwidths and Local Linear Regression Smooth-
 ers." Annals of Statistics 20:2008-2036.

 Hardle, W. 1990. Applied Nonparametric Regression. Cambridge: Cambridge University
 Press.

 Hardle, W., and M. Jerison. 1991. "Cross-Sectional Engel Curves over Time." Recherches
 Economiques de Louvain 57:391-431.

 Hardle, W., and O. Linton. 1994. "Applied Nonparametric Methods." In Handbook of
 Econometrics, Volume IV, ed. R. Engle, and D. McFadden, 2295-2339. Elsevier Sci-
 ence.

 Hardle, W., and T. Stoker. 1989. "Investigating Smooth Multiple Regression by the
 Method of Average Derivatives." Journal of the American Statistical Association 84:
 986-95.

 Hardle, W., and E. Mammen. 1993. "Comparing Nonparametric vs. Parametric Regression
 Fits." Annals of Statistics. 21:1926-47.

 Hausman, J., W. Newey, and J. Powell. 1995. "Nonlinear Errors in Variables: Estimation
 of Some Engel Curves." Journal of Econometrics 65:205-34.

 Heckman, J., H. Ichimura, J. Smith, and P. Todd. 1995. "Nonparametric Characterization
 of Selection Bias Using Experimental Data: A Study of Adult Males in JTPA." Mimeo,
 University of Chicago.

 Holly, A., and J. Sargan. 1982. "Testing for Exogeneity in a Limited Information Frame-
 work." Cahiers de Recherches Economiques, No. 8204, Universite de Lausanne.

 Jorgenson, D., L. Christensen, and L. Lau. 1975. "Transcendental Logarithmic Utility
 Functions." American Economic Review 65:367-83.

This content downloaded from 
��������������86.250.10.7 on Wed, 31 Jul 2024 10:48:33 UTC�������������� 

All use subject to https://about.jstor.org/terms



 Symposium: Blundell and Duncan 87

 Leser, C. 1963. "Forms of Engel Functions," Econometrica 31:694-703.
 Lewbel, A. 1991. "The Rank of Demand Systems: Theory and Nonparametric Estima-

 tion." Econometrica 59:711-30.

 Linton, 0., and P. Gozalo. 1996. "Using Parametric Information in Non-Parametric Regres-
 sion." Mimeo. Brown University.

 Nadaraya, E. 1964. "On Estimating Regression." Theory of Probability and its Applica-
 tions 9:141-42.

 Newey, W. K., J. L. Powell, and F. Vella. 1995. "Nonparametric Estimation of Triangular
 Simultaneous Equations Models." Mimeo. MIT Department of Economics.

 Rice, J. 1984. "Bandwidth Choice for Nonparametric Regression." Annals of Statistics 12:
 1215-30.

 Robinson, P. 1988. "Root-N-Consistent Semiparametric Regression." Econometrica 56:
 931-54.

 Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. London: Chap-
 man and Hall.

 Stoker, T. 1986. "Consistent Estimation of Scaled Coefficients." Econometrica 54:1461-
 81.

 --- . 1991. Lectures in Semiparametric Econometrics. CORE Lecture Series. CORE
 Foundation.

 Watson, G. 1964."Smooth Regression Analysis." Sankhya 26:359-72.
 Wooldridge, J. 1992. "A Test of Functional Form against Nonparametric Alternatives."

 Econometric Theory 8:452-75.
 Working, H. 1943. "Statistical Laws of Family Expenditure." Journal of the American Sta-

 tistical Association 38:43-56.

 Zheng, J. 1996. "A Consistent Test of Functional Form via Nonparametric Estimation
 Techniques." Journal of Econometrics 75:263-89.

This content downloaded from 
��������������86.250.10.7 on Wed, 31 Jul 2024 10:48:33 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21
	image 22
	image 23
	image 24
	image 25
	image 26

	Issue Table of Contents
	Journal of Human Resources, Vol. 33, No. 1, Winter, 1998
	Front Matter [pp.  1 - 171]
	Symposium on Microeconometric Methods
	Introduction to Symposium on Microeconometric Methods [p.  3]
	Estimation of Semiparametric Censored Regression Models: An Application to Changes in Black-White Earnings Inequality during the 1960s [pp.  4 - 38]
	Bootstrap Methods for Covariance Structures [pp.  39 - 61]
	Kernel Regression in Empirical Microeconomics [pp.  62 - 87]
	Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research [pp.  88 - 126]
	Estimating Models with Sample Selection Bias: A Survey [pp.  127 - 169]

	The Link between Ability and Specialization: An Explanation for Observed Correlations between Wages and Mobility Rates [pp.  173 - 200]
	Unions, Wages, and Skills [pp.  201 - 219]
	Communications
	Women Helping Women? Role Model and Mentoring Effects on Female Ph.D. Students in Economics [pp.  220 - 246]

	Addendum to "Instrumental Variables: A Study of Implicit Assumptions Used in Making Program Evaluations" [p.  247]
	Back Matter [pp.  248 - 248]



